Simscape™
User’s Guide

R2013a

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simscape™ User’s Guide
© COPYRIGHT 2007-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2007a)

Revised for Version 2.0 (Release 2007b)
Revised for Version 2.1 (Release 2008a)
Revised for Version 3.0 (Release 2008b)
Revised for Version 3.1 (Release 2009a)
Revised for Version 3.2 (Release 2009b)
Revised for Version 3.3 (Release 2010a)
Revised for Version 3.4 (Release 2010b)
Revised for Version 3.5 (Release 2011a)
Revised for Version 3.6 (Release 2011b)
Revised for Version 3.7 (Release 2012a)
Revised for Version 3.8 (Release 2012b)
Revised for Version 3.9 (Release 2013a)

Model Construction

Basic Principles of Modeling Physical Networks
Overview of the Physical Network Approach to Modeling
Physical Systems i e
Variable Typeso i
Building the Mathematical Model
Direction of Variables
Connector Ports and Connection Lines
Connecting Simscape Diagrams to Simulink Sources and
770 o 1=

Simscape Block Libraries
Library Structure Overviewcccvveunnnnn.
Using the Simulink Library Browser to Access the Block

Librariesoiiii i e
Using the Command Prompt to Access the Block
Librariesoiiii i e

Essential Physical Modeling Techniques
Building Your Model
Using the Conserving Ports
Using the Physical Signal Ports

Creating and Simulating a Simple Model
Building a Simscape Diagram
Modifying Initial Settingsciieeiino...
Running the Simulation
Adjusting the Parameters

Modeling Best Practices
Grounding Rules
Avoiding Numerical Simulation Issues

Modeling Pneumatic Systems
Intended Applicationsc.o i,

1-2

1-2
1-4
1-5
1-6
1-8

Assumptions and Limitations 1-44

Fundamental Equations 1-45
Network Variables 1-46
Connection Constraintscoiiiieeneeeeenn. 1-47
References, 1-47

Model Simulation

2

How Simscape Models Represent Physical Systems . .. 2-2
Representations of Physical Systems 2-2
Differential, Differential-Algebraic, and Algebraic

Sy SteIMS . e 2-2
StIffnesS .o e e e 2-3
Events and Zero Crossingsc.couuiiinnnn... 2-3
Working with Simscape Representation 2-3

How Simscape Simulation Works 2-5
Simscape Simulation Phases 2-5
Model Validation i, 2-7
Network Constructioncoiuieeeinnnnnnn. 2-7
Equation Construction, 2-8
Initial Conditions Computation 2-8
Transient Initialization 2-9
Transient Solvet 2-9

Setting Up Solvers for Physical Models 2-11
About Simulink and Simscape Solvers 2-11
Choosing Simulink and Simscape Solvers 2-11
Harmonizing Simulink and Simscape Solvers 2-13

Customizing Solvers for Physical Models 2-19
Important Concepts and Choices in Physical Simulation .. 2-19
Making Optimal Solver Choices for Physical Simulation .. 2-22

Troubleshooting Simulation Exrors 2-28
Troubleshooting Tips and Techniques 2-28
System Configuration Errors 2-29
Numerical Simulation Issues 2-32

vi Contents

Initial Conditions Solve Failure 2-32

Transient Simulation Issues 2-33
Code Generation 0 iiiiinneennnn. 2-35
About Code Generation from Simscape Models 2-35
Reasons for Generating Code 2-35
Using Code-Related Products and Features 2-36

How Simscape Code Generation Differs from Simulink ... 2-36

Real-Time Simulation 2-39
What Is Real-Time Simulation? 2-39
Requirements for Real-Time Simulation 2-40
Simulating Physical Models in Real Time 2-41
Preparing a Model for Real-Time Simulation 2-42
Troubleshooting Real-Time Simulation Problems 2-45

Finding an Operating Point 2-48
What Is an Operating Point? 2-48
Some Operating Point Search Methods 2-49
Finding Operating Points in Physical Models 2-50

Linearizing at an Operating Point 2-55
What Is Linearization?, 2-55
Some Linearization Methods 2-58
Linearizing a Physical Model 2-59

Linearize an Electronic Circuit 2-64
About the Nonlinear Bipolar Transistor Circuit 2-64
Finding Operating Points in a Transistor Circuit with the

Simscape Solver 2-70
Linearizing a Transistor Circuit with Simulink and Related
Softwareiiii e e e 2-71

Limitations 2-77
Sample Time and Solver Restrictions 2-77
Algebraic Loopst e 2-77
Restricted Simulink Tools 2-78
Unsupported Simulink Tools 2-80
Simulink Tools Not Compatible with Simscape Blocks ... 2-80
Code Generationooiuiiiueeennnnnnnnneen. 2-81

vii

viii

Contents

References i,

3

q

About Simulation Data Logging 3-2
Suggested Workflows 3-2
Limitations0uitin e i 3-2

How to Log SimulationData 3-3
How to Enable Data Logging 3-3
Data Logging Optionsc.couuiiieeinnnnnnnnnnn. 3-4

Log and Plot SimulationData 3-7

Log Simulation Statistics 3-13

Physical Units

How to Work with Physical Units 4-2

Unit Definitions 4-4

How to Specify Units in Block Dialogs 4-10

Thermal Unit Conversions 4-12
About Affine Units 4-12
When to Apply Affine Conversion 4-12
How to Apply Affine Conversion 4-13

Angular Units 4-16
Referencesciiiiiiiii i 4-16

Units for Angular Velocity and Frequency 4-17

Add-On Product License Management

5

About the Simscape Editing Mode 5-2
Suggested Workflows 5-2
What You Can Do in Restricted Mode 5-3
What You Can Doin FullMode 5-4
Switching Between Modes 5-4
Working with Block Libraries 5-7

Working with Restricted and Full Modes 5-9
Set the Model Loading Preference 5-9
Save a Model in Restricted Mode 5-10
Work with a Model in Restricted Mode 5-13
Switch from Restricted to Full Mode 5-22

Editing Mode Information 5-24
What Is the Current Mode? 5-24
Which Licenses Are Checked Out? 5-24

Index

ix

X Contents

Model Construction

¢ “Basic Principles of Modeling Physical Networks” on page 1-2
® “Simscape Block Libraries” on page 1-11

¢ “Essential Physical Modeling Techniques” on page 1-15

¢ “Creating and Simulating a Simple Model” on page 1-18

¢ “Modeling Best Practices” on page 1-36

¢ “Modeling Pneumatic Systems” on page 1-44

1 Model Construction

Basic Principles of Modeling Physical Networks

In this section...

“Overview of the Physical Network Approach to Modeling Physical Systems”
on page 1-2

“Variable Types” on page 1-4

“Building the Mathematical Model” on page 1-5
“Direction of Variables ” on page 1-6

“Connector Ports and Connection Lines” on page 1-8

“Connecting Simscape Diagrams to Simulink Sources and Scopes” on page
1-10

Overview of the Physical Network Approach to
Modeling Physical Systems

Simscape™ software is a set of block libraries and special simulation features
for modeling physical systems in the Simulink® environment. It employs

the Physical Network approach, which differs from the standard Simulink
modeling approach and is particularly suited to simulating systems that
consist of real physical components.

Simulink blocks represent basic mathematical operations. When you
connect Simulink blocks together, the resulting diagram is equivalent to the
mathematical model, or representation, of the system under design. Simscape
technology lets you create a network representation of the system under
design, based on the Physical Network approach. According to this approach,
each system is represented as consisting of functional elements that interact
with each other by exchanging energy through their ports.

These connection ports are nondirectional. They mimic physical connections
between elements. Connecting Simscape blocks together is analogous to
connecting real components, such as pumps, valves, and so on. In other words,
Simscape diagrams mimic the physical system layout. If physical components
can be connected, their models can be connected, too. You do not have to
specify flow directions and information flow when connecting Simscape
blocks, just as you do not have to specify this information when you connect

1-2

Basic Principles of Modeling Physical Networks

real physical components. The Physical Network approach, with its Through
and Across variables and nondirectional physical connections, automatically
resolves all the traditional issues with variables, directionality, and so on.

The number of connection ports for each element is determined by the number
of energy flows it exchanges with other elements in the system, and depends
on the level of idealization. For example, a fixed-displacement hydraulic
pump in its simplest form can be represented as a two-port element, with one
energy flow associated with the inlet (suction) and the other with the outlet.
In this representation, the angular velocity of the driving shaft is assumed
constant, making it possible to neglect the energy exchange between the
pump and the shaft. To account for a variable driving torque, you need a third
port associated with the driving shaft.

An energy flow is characterized by its variables. Each energy flow is
associated with two variables, one Through and one Across (see “Variable
Types” on page 1-4 for more information). Usually, these are the variables
whose product is the energy flow in watts. They are called the basic, or
conjugate, variables. For example, the basic variables for mechanical
translational systems are force and velocity, for mechanical rotational
systems—torque and angular velocity, for hydraulic systems—flow rate and
pressure, for electrical systems—current and voltage.

The following example illustrates a Physical Network representation of a
double-acting hydraulic cylinder.

¥z

—

NI

F4]

The element is represented with three energy flows: two flows of hydraulic
energy through the inlet and outlet of the cylinder and a flow of mechanical

1-3

1 Model Construction

1-4

energy associated with the rod motion. It therefore has the following three
connector ports:

¢ A — Hydraulic conserving port associated with pressure p, (an Across
variable) and flow rate g, (a Through variable)

¢ B — Hydraulic conserving port associated with pressure p, (an Across
variable) and flow rate g, (a Through variable)

e R — Mechanical translational conserving port associated with rod velocity

v, (an Across variable) and force F, (a Through variable)

See “Connector Ports and Connection Lines” on page 1-8 for more information
on connector port types.

Variable Types

Physical Network approach supports two types of variables:

® Through — Variables that are measured with a gauge connected in series
to an element.

® Across — Variables that are measured with a gauge connected in parallel
to an element.

The following table lists the Through and Across variables associated with
each type of physical domain in Simscape software:

Physical Domain Across Variable

Through Variable

Electrical Voltage Current

Hydraulic Pressure Flow rate

Magnetic Magnetomotive force Flux
(mm)

Mechanical rotational ~ Angular velocity Torque

Mechanical Translational velocity Force

translational

Basic Principles of Modeling Physical Networks

Physical Domain Across Variable Through Variable

Pneumatic Pressure and Mass flow rate and heat
temperature flow

Thermal Temperature Heat flow

Note Generally, the product of each pair of Across and Through variables
associated with a domain is power (energy flow in watts). The exceptions are
pneumatic domain, where the product of pressure and mass flow rate is not
power, and magnetic domain, where the product of mmf and flux is not power,
but energy. These result in a pseudo-bond graph.

Building the Mathematical Model

Through and Across variables associated with all the energy flows form the
basis of the mathematical model of the block.

V3

— £,

ACI—

F4 2]

For example, the model of a double-acting hydraulic cylinder shown in the
previous illustration can be described with a simple set of equations:

F3 = p1l/A; — palAg
q1 = Aqlvg

q9 = Aglbg

1 Model Construction

1-6

where

9,4, Flow rates through ports A and B, respectively (Through variables)
D;Ps Gauge pressures at ports A and B, respectively (Across variables)
A;A, Piston effective areas

F, Rod force (Through variable)

Ug Rod velocity (Across variable)

The model could be considerably more complex, for example, it could
account for friction, fluid compressibility, inertia of the moving parts, and
so on. For all these different mathematical models, however, the element
configuration (that is, the number and type of ports and the associated
Through and Across variables) would remain the same, meaning that the
Physical Network approach lets you substitute models of different levels of
complexity without introducing any changes to the schematic. For example,
you can start developing your system by using the Resistive Tube block from
the Foundation library, which accounts only for friction losses. At a later
stage in development, you may want to account for fluid compressibility.
You can then replace it with a Hydraulic Pipeline block, available with
SimHydraulics® block libraries, or, depending on your application, even with
a Segmented Pipeline block if you also need to account for fluid inertia. This
modeling principle is called incremental modeling.

Direction of Variables

Each variable is characterized by its magnitude and sign. The sign is the
result of measurement orientation. The same variable can be positive or
negative, depending on the polarity of a measurement gauge.

Elements with only two ports are characterized with one pair of variables, a
Through variable and an Across variable. Since these variables are closely
related, their orientation is defined with one direction. For example, if an
element is oriented from port A to port B, it implies that the Through variable
(T'V) is positive if it “flows” from A to B, and the Across variable is determined
as AV=AV,- AV, where AV, and AV} are the element node potentials or, in
other words, the values of this Across variable at ports A and B, respectively.

Basic Principles of Modeling Physical Networks

element
direction \ lef.._
A T B
O —_— QO
A AV =

ﬁ//—— reference nodes ——‘\\i

This approach to the direction of variables has the following benefits:

® Provides a simple and consistent way to determine whether an element is
active or passive. Energy is one of the most important characteristics to
be determined during simulation. If the variables direction, or sign, is
determined as described above, their product (that is, the energy) is positive
if the element consumes energy, and is negative if it provides energy to a
system. This rule is followed throughout the Simscape software.

¢ Simplifies the model description. Symbol A B is enough to specify
variable polarity for both the Across and the Through variables.

® Lets you apply the oriented graph theory to network analysis and design.
As an example of variables direction rules, let us consider the Ideal Force
Source block. In this block, as in many other mechanical blocks, port C is

associated with the source reference point (case), and port R is associated
with the rod.

1-7

1 Model Construction

1-8

|deal Force Sowce

o K

1 p{sFS T

o

—
Constant Simulink-FS
Converter Mechanical
Trans lational
= Reference

The block positive direction is from port C to port R. This means that the force
is positive if it acts in the direction from C to R, and causes bodies connected
to port R to accelerate in the positive direction. The relative velocity is
determined as v = v, — v,, where v,, v, are the absolute velocities at ports R
and C, respectively, and it is negative if velocity at port R is greater than that
at port C. The power generated by the source is computed as the product of
force and velocity, and is negative if the source provides energy to the system.

Definition of positive direction is different for different blocks. Check the
block source or the block reference page if in doubt about the block orientation
and direction of variables.

All the elements in a network are divided into active and passive elements,
depending on whether they deliver energy to the system or dissipate (or store)
it. Active elements (force and velocity sources, flow rate and pressure sources,
etc.) must be oriented strictly in accordance with the line of action or function
that they are expected to perform in the system, while passive elements
(dampers, resistors, springs, pipelines, etc.) can be oriented either way.

Connector Ports and Connection Lines
Simscape blocks may have the following types of ports:

¢ Physical Conserving ports — Nondirectional ports (for example, hydraulic
or mechanical) that represent physical connections and relate physical
variables based on the Physical Network approach.

Basic Principles of Modeling Physical Networks

e Physical Signal ports — Unidirectional ports transferring signals that use
an internal Simscape engine for computations.

Each of these ports and connections between them are described in greater
detail below.

Physical Conserving Ports

Simscape blocks have special Conserving ports B. You connect Conserving
ports with Physical connection lines, distinct from normal Simulink lines.
Physical connection lines have no inherent directionality and represent the
exchange of energy flows, according to the Physical Network approach.

® You can connect Conserving ports only to other Conserving ports of the
same type.

® The Physical connection lines that connect Conserving ports together are
nondirectional lines that carry physical variables (Across and Through
variables, as described above) rather than signals. You cannot connect
Physical lines to Simulink ports or to Physical Signal ports.

¢ Two directly connected Conserving ports must have the same values for all
their Across variables (such as pressure or angular velocity).

® You can branch Physical connection lines. When you do so, components
directly connected with one another continue to share the same Across
variables. Any Through variable (such as flow rate or torque) transferred
along the Physical connection line is divided among the multiple
components connected by the branches. How the Through variable is
divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch
point equals the sum of all its values flowing out.

Each type of Physical Conserving ports used in Simscape blocks uniquely
represents a physical modeling domain. For a list of port types, along with
the Through and Across variables associated with each type, see the table in
“Variable Types” on page 1-4.

1-9

1 Model Construction

1-10

Physical Signal Ports

Physical Signal ports [* carry signals between Simscape blocks. You connect
them with regular connection lines, similar to Simulink signal connections.
Physical Signal ports are used in Simscape block diagrams instead of
Simulink input and output ports to increase computation speed and avoid
issues with algebraic loops. Unlike Simulink signals, which are essentially
unitless, physical signals can have units associated with them. You specify
the units along with the parameter values in the block dialogs, and Simscape
software performs the necessary unit conversion operations when solving a
physical network.

Simscape Foundation library contains, among other sublibraries, a Physical
Signals block library. These blocks perform math operations and other
functions on physical signals, and allow you to graphically implement
equations inside the Physical Network.

Connecting Simscape Diagrams to Simulink Sources
and Scopes

Simscape block diagrams use physical signals instead of regular Simulink
signals. Therefore, you need converter blocks to connect Simscape diagrams
to Simulink sources and scopes.

Use the Simulink-PS Converter block to connect Simulink sources or other
Simulink blocks to the inputs of a Physical Network diagram. You can
also use it to specify the input signal units. For more information, see the
Simulink-PS Converter block reference page.

Use the PS-Simulink Converter block to connect outputs of a Physical
Network diagram to Simulink scopes or other Simulink blocks. You can also
use 1t to specify the desired output signal units. For more information, see
the PS-Simulink Converter block reference page.

For an example of using converter blocks to connect Simscape diagrams to
Simulink sources and scopes, see “Creating and Simulating a Simple Model”
on page 1-18.

Simscape™ Block Libraries

Simscape Block Libraries

In this section...

“Library Structure Overview” on page 1-11

“Using the Simulink Library Browser to Access the Block Libraries” on
page 1-13

“Using the Command Prompt to Access the Block Libraries” on page 1-13

Library Structure Overview

Simscape block library contains two libraries that belong to the Simscape
product:

¢ Foundation library — Contains basic hydraulic, pneumatic, mechanical,
electrical, magnetic, thermal, and physical signal blocks, organized into
sublibraries according to technical discipline and function performed

e Utilities library — Contains essential environment blocks for creating

Physical Networks models

In addition, if you have installed any of the add-on products of the Physical
Modeling family, you will see the corresponding libraries under the main
Simscape library.

Simscape Foundation libraries contain a comprehensive set of basic elements
and building blocks, such as:

e Mechanical building blocks for representing one-dimensional translational
and rotational motion

e Electrical building blocks for representing electrical components and
circuits

e Magnetic building blocks that represent electromagnetic components

¢ Hydraulic building blocks that model fundamental hydraulic effects and
can be combined to create more complex hydraulic components

® Pneumatic building blocks that model fundamental pneumatic effects
based on the ideal gas law

1-11

1 Model Construction

1-12

¢ Thermal building blocks that model fundamental thermal effects

¢ Physical Signals block library that lets you perform math operations on
physical signals, and graphically enter equations inside the physical
network

Using the elements contained in these Foundation libraries, you can create
more complex components that span different physical domains. You can
then group this assembly of blocks into a subsystem and parameterize it to
reuse and share these components.

In addition to Foundation libraries, there is also a Simscape Utilities library,
which contains utility blocks, such as:

® Solver Configuration block, which contains parameters relevant to
numerical algorithms for Simscape simulations. Each Simscape diagram
(or each topologically distinct physical network in a diagram) must contain
a Solver Configuration block.

e Simulink-PS Converter block and PS-Simulink Converter block, to connect
Simscape and Simulink blocks. Use the Simulink-PS Converter block to
connect Simulink outports to Physical Signal inports. Use the PS-Simulink
Converter block to connect Physical Signal outports to Simulink inports.

For examples of using these blocks in a Simscape model, see the tutorial
“Creating and Simulating a Simple Model” on page 1-18.

You can combine all these blocks in your Simscape diagrams to model physical
systems. You can also use the basic Simulink blocks in your diagrams, such as
sources or scopes. See “Connecting Simscape Diagrams to Simulink Sources
and Scopes” on page 1-10 for more information on how to do this.

Simscape block libraries contain a comprehensive selection of blocks that
represent engineering components such as valves, resistors, springs, and so
on. These prebuilt blocks, however, may not be sufficient to address your
particular engineering needs. When you need to extend the existing block
libraries, use the Simscape language to define customized components, or
even new physical domains, as textual files. Then convert your textual
components into libraries of additional Simscape blocks that you can use in
your model diagrams. For more information on how to do this, see “Typical
Simscape Language Tasks”.

Simscape™ Block Libraries

Using the Simulink Library Browser to Access the
Block Libraries

You can access the blocks through the Simulink Library Browser. To display
the Library Browser, click the Library Browser button in the toolbar of the
MATLAB® desktop or Simulink model window:

]
EE

Alternatively, you can type simulink in the MATLAB Command Window.
Then expand the Simscape entry in the contents tree.

Esimu\ink Library Browser E@

File Edit View Help
(| = » | Enter search term - ﬁ EI

Libraries Library: Simscape Search Results: (none) »
=
-
- E SimRF Foundation
- NEET Ly
%--Fuundat\un Library

i [#-Electrical
R Hydraulic
Magnetic
Mechanical
H Physical Signals
+ Pneumatic
| M- Thermal
%—--ESimDriveline
+- W[simElectronics
+--ESimHydraulics
+- Igh|simMechanics
+ [ESiI‘I‘IPU werdystems
- Utilties
+- 1| Simuiink 30 Animation
+-E Simulink Coder

b =1 fimL P
Showing: Simscape

SimDriveline

SimElectronics

SimHydraulics

SimMechanics

m

=3 ie e e

SimPowsrSyste-
ms

Uilities

Using the Command Prompt to Access the Block
Libraries

To access individual block libraries by using the command prompt:

® To open the Simscape library, type simscape in the MATLAB Command
Window.

® To open the main Simulink library (to access generic Simulink blocks), type
simulink in the MATLAB Command Window.

1-13

1 Model Construction

1-14

The Simscape library consists of two top-level libraries, Foundation and
Utilities. In addition, if you have installed any of the add-on products of the
Physical Modeling family, you will see the corresponding libraries under
Simscape library, as shown in the following illustration. Some of these
libraries contain second-level and third-level sublibraries. You can expand
each library by double-clicking its icon.

1) Library: simscape E\@

File Edit View Format Help

S ® 6 = 9

Foundation SimDriveline SimElectronics SimHydraulics SimMechanics

Library
%/ QL ‘

SimPowerSystems Utilities

Essential Physical Modeling Technigues

Essential Physical Modeling Techniques

Building Your Model

The rules that you must follow when building a physical model with Simscape
software are described in “Basic Principles of Modeling Physical Networks” on
page 1-2. This section briefly reviews these rules.

® Build your physical model by using a combination of blocks from the
Simscape Foundation and Utilities libraries. Simscape software lets you
create a network representation of the system under design, based on the
Physical Network approach. According to this approach, each system is
represented as consisting of functional elements that interact with each
other by exchanging energy through their ports.

e Each Simscape diagram (or each topologically distinct physical network in
a diagram) must contain a Solver Configuration block from the Simscape
Utilities library.

¢ [f you have hydraulic elements in your model, the working fluid used in
the hydraulic circuit defines their global parameters, such as fluid density,
fluid kinematic viscosity, fluid bulk modulus, and so on. To specify the
working fluid, attach a Custom Hydraulic Fluid block (or a Hydraulic Fluid
block, available with SimHydraulics block libraries) to each topologically
distinct hydraulic circuit. If no Hydraulic Fluid block or Custom Hydraulic
Fluid block is attached to a circuit, the hydraulic blocks use the default
fluid, which is equivalent to fluid defined by a Custom Hydraulic Fluid
block with the default parameter values.

¢ [f you have pneumatic elements in your model, default gas properties are
for dry air and ambient conditions of 101325 Pa and 20 degrees Celsius.
Attach a Gas Properties block to each topologically distinct pneumatic
circuit to change gas properties and ambient conditions.

¢ To connect regular Simulink blocks (such as sources or scopes) to your
physical network diagram, use the converter blocks, as described in “Using
the Physical Signal Ports” on page 1-17.

¢ Use the incremental modeling approach. Start with a simple model, run
and troubleshoot it, then add the desired special effects. For example, you
can start developing your system by using the Resistive Tube block from
the Foundation library, which accounts only for friction losses. At a later

1-15

1 Model Construction

1-16

stage in development, you may want to account for fluid compressibility.
You can then replace it with a Hydraulic Pipeline block, available with
SimHydraulics block libraries, or, depending on your application, even with
a Segmented Pipeline block if you also need to account for fluid inertia. For
all these different mathematical models, the element configuration (that
1s, the number and type of ports and the associated Through and Across
variables) would remain the same, meaning that the Physical Network
approach lets you substitute models of different levels of complexity
without introducing any changes to the schematic.

Simscape blocks, in general, feature both Conserving ports B and Physical
Signal inports and outports [*.

Using the Conserving Ports
The following rules apply to Conserving ports:

® There are different types of Physical Conserving ports used in Simscape
block diagrams, such as hydraulic, pneumatic, electrical, magnetic,
thermal, mechanical translational, and mechanical rotational. Each type
has specific Through and Across variables associated with it. For more
information, see “Variable Types” on page 1-4.

® You can connect Conserving ports only to other Conserving ports of the
same type.

¢ The Physical connection lines that connect Conserving ports together are
nondirectional lines that carry physical variables (Across and Through
variables, as described above) rather than signals. You cannot connect
Physical lines to Simulink ports or to Physical Signal ports.

® Two directly connected Conserving ports must have the same values for all
their Across variables (such as voltage or angular velocity).

® You can branch Physical connection lines. When you do so, components
directly connected with one another continue to share the same Across
variables. Any Through variable (such as current or torque) transferred
along the Physical connection line is divided among the multiple
components connected by the branches. How the Through variable is
divided is determined by the system dynamics.

Essential Physical Modeling Technigues

For each Through variable, the sum of all its values flowing into a branch
point equals the sum of all its values flowing out.

Using the Physical Signal Ports

The following rules apply to Physical Signal ports:

® You can connect Physical Signal ports to other Physical Signal ports with
regular connection lines, similar to Simulink signal connections. These
connection lines carry physical signals between Simscape blocks.

® You can connect Physical Signal ports to Simulink ports through special
converter blocks. Use the Simulink-PS Converter block to connect Simulink
outports to Physical Signal inports. Use the PS-Simulink Converter block
to connect Physical Signal outports to Simulink inports.

e Unlike Simulink signals, which are essentially unitless, Physical Signals
can have units associated with them. Simscape block dialogs let you specify
the units along with the parameter values, where appropriate. Use the
converter blocks to associate units with an input signal and to specify the
desired output signal units.

For examples of applying these rules when creating an actual physical model,
see the tutorial “Creating and Simulating a Simple Model” on page 1-18.

1-17

1 Model Construction

Creating and Simulating a Simple Model

In this section...

“Building a Simscape Diagram” on page 1-18
“Modifying Initial Settings” on page 1-26

“Running the Simulation” on page 1-27

“Adjusting the Parameters” on page 1-30

Building a Simscape Diagram

In this example, you are going to model a simple mechanical system and
observe its behavior under various conditions. This tutorial illustrates the
essential steps to building a physical model and makes you familiar with
using the basic Simscape blocks.

The following schematic represents a simple model of a car suspension. It
consists of a spring and damper connected to a body (represented as a mass),
which is agitated by a force. You can vary the model parameters, such as the
stiffness of the spring, the mass of the body, or the force profile, and view the
resulting changes to the velocity and position of the body.

1-18

Creating and Simulating a Simple Model

To create an equivalent Simscape diagram, follow these steps:

1 Open the Simulink Library Browser, as described in “Simscape Block
Libraries” on page 1-11.

2 Create a new model. To do this, from the top menu bar of the Library
Browser, select File > New > Model. The software creates an empty
model in memory and displays it in a new model editor window.

Note Alternately, you can type ssc_new at the MATLAB Command
prompt, to create a new model prepopulated with certain required and
commonly-used blocks. For more information, see “Creating a New
Simscape Model”.

3 Open the Simscape > Foundation Library > Mechanical > Translational
Elements library.

4 Drag the Mass, Translational Spring, Translational Damper, and two
Mechanical Translational Reference blocks into the model window.

1-19

1 Model Construction

5 Orient the blocks as shown in the following illustration. To rotate a block,
select it and press Ctrl+R.

%4 united " oo)
File Edit View Display Diagram Simulation Analysis Code Tools Help
BB a EG-EHGOD = ©- 0 5D -
untitled
® |[Pa|untitled -
)

Mechanical
Bl Tlansl;ni;:ll

Referencel
=
[

gl

Mass

Translational Spring % %‘ Translaticnal Damper

Mechanical
Translational
 Reference

»

Ready 100% oded5

6 Connect the Translational Spring, Translational Damper, and Mass blocks
to one of the Mechanical Translational Reference blocks as shown in the
next illustration.

1-20

Creating and Simulating a Simple Model

%4 united " oo)
File Edit View Display Diagram Simulation Analysic Code Tools Help

E-8 e BB AOP = @ v »Q -
untitled

® |[Pa|untitled

17 A R

»

H

Mechanical |
Translational
Referencel

Translational Spring

—
:

Translaticnal Damper

—
;

Mechanical
Translations|
Reference

Ready

100% oded5

7 To add the representation of the force acting on the mass, open the
Simscape > Foundation Library > Mechanical > Mechanical Sources library
and add the Ideal Force Source block to your diagram.

To reflect the correct direction of the force shown in the original schematic,
flip the block by selecting Diagram > Rotate & Flip > Flip Block >
Up-Down from the top menu bar of the model window. Connect the block’s
port C (for “case”) to the second Mechanical Translational Reference block,
and its port R (for “rod”) to the Mass block, as shown below.

1-21

1 Model Construction

%4 untited oo s
File Edit View Display Diagram Simulation Analysis Code Tools Help
BB a EG-EHGOP 2 @m0 5@ -
untitled
@ |Pa|untitled -
)

Mechanical
Bl Tlansl;ni;:ll

Referencel
=
=

v
ip

Ideal Farce Souwrce

.
)
2

Translational Spring Translaticnal Damper

Mechanical
Translations|
Reference

»

Ready 100% oded5

8 Add the sensor to measure speed and position of the mass. Place the Ideal
Translational Motion Sensor block from the Mechanical Sensors library
into your diagram and connect it as shown below.

1-22

Creating and Simulating a Simple Model

%4 united " oo e
File Edit View Display Diagram Simulation Analysis Code Tools Help
5]~ =) iii
E-3 & OB 4Ok = @~ v » @ | @~
untitled
® |Pa|untitled -
)
Mechanical |
Bl Translational
Referencel
=
IEI v
op
Ideal Farce Souwrce
H] s
P
Mass Ideal Translational
Mation Sensar
Translational Spring % %‘ Translstional Damper
Mechanical
Translations|
Reference:
bod
Ready 100% oded5

9 Now you need to add the sources and scopes. They are found in the regular
Simulink libraries. Open the Simulink > Sources library and copy the
Signal Builder block into the model. Then open the Simulink > Sinks
library and copy two Scope blocks. Rename one of the Scope blocks to
Velocity and the other to Position.

1-23

1 Model Construction

1-24

%4 united " oo s
File Edit View Display Diagram Simulation Analysis Code Tools Help
BB a EG-EHGOP = ©- 0 5@ -
untitled
@ |Pa|untitled -
]
Mechanical |
Bl Translational
_ B sianai 1 Referencet
Signal Builder
=

v
p

Ideal Farce Souwce

g o)

Mass Ideal Translational Velocity
Meticn Sensor
Translational Spring % %‘ Translational Damper @
Mechanical
Tianslational
Reference
>
Ready 100% oded5

10 Every time you connect a Simulink source or scope to a Simscape diagram,
you have to use an appropriate converter block, to convert Simulink signals
into physical signals and vice versa. Open the Simscape > Utilities library
and copy a Simulink-PS Converter block and two PS-Simulink Converter
blocks into the model. Connect the blocks as shown below.

Creating and Simulating a Simple Model

%4 united oo e
File Edit View Display Diagram Simulation Analysis Code Tools Help
Cim = ‘ol i
E-8 OB 4Ok = @~ wo » @ | @~
untitied
® |Pa|untitled -
@
Mechanical |
Bl . Translational
= % Signal 1——#|SFS Referancel
Signal Builder SimulinkPS
=] Converter
o
Ideal Farce Souwce
H] s DFE'E'—.EI
P
Mass Ideal Translational D Velocty
Maticn Sersar Gomverter
L 0
—
Translational Spring % %‘ Translstional Damper PSRNk —
Converter 1
Mechanical
Translations|
Reference:
bl
Ready 100% oded5

11 Each topologically distinct physical network in a diagram requires
exactly one Solver Configuration block, found in the Simscape > Utilities
library. Copy this block into your model and connect it to the circuit by
creating a branching point and connecting it to the only port of the Solver

Configuration block. Your diagram now should look like this.

1-25

1 Model Construction

%4 united oo s
File Edit View Display Diagram Simulation Analysis Code Tools Help
]] =) i
E-8 OB 4Ok = @~ wo » @ | @~
untitied
@ |Pa|untitled -
@
Mechanical |
Bl . Translational
= % Signal 1——#|SFS Referancel
Signal Buid=r Simulink-PS
=] Converter
b &
Ideal Farce Souwce
{] N feb—
P
Mass Ideal Trarslational D Velocty
Maticn Sersar Comverter
L 0
—
Translational Spring % %‘ Translstional Damper PSRNk —
Converter 1
.
Solver Mechanical
Configuration Translationsl
Reference:
»
Ready 100% oded5

12 Your block diagram is now complete. Save it as mech_simple.

Modifying Initial Settings

After you have put together a block diagram of your model, as described in the
previous section, you need to select a solver and provide the correct values
for configuration parameters.

To prepare for simulating the model, follow these steps:
1 Select a Simulink solver. On the top menu bar of the model window,

select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens, showing the Solver node.

1-26

Creating and Simulating a Simple Model

Under Solver options, set Solver to ode15s (Stiff/NDF) and Max step
size to 0.2.

Also note that Simulation time is specified to be between 0 and 10
seconds. You can adjust this setting later, if needed.

% Configuration Parameters: mech_simple/Configuration (Active) @
Select: Simulation time -
rEahiel Starttime: 0.0 Stop time: 10.0
i Data Import/Export
i “Optimization Solver options
+- Diagnostics

~Hardware Implementation
-Model Referencing
-Simulation Target

+-Code Generation

- Simscape

-SimMechanics 1G
-SimMechanics 2G

o]

Feoe

Type: Variable-step T | Solver: |ode155 (stiff/NDF) h

Max step size: 0.2 Relative tolerance: 1e-3

Min step size: auto Absolute tolerance: auto

Initial step size: auto Shape preservation: |D\sable All - |

Solver reset method: |Fast v| Maximum order: |5 hd | A
Number of consecutive min steps: 1

Solver Jacobian method: |auto '|

Tasking and sample time options
Tasking mode for periodic sample times: Auto
Automatically handle rate transition for data transfer

Higher priority value indicates higher task priority

Zero-crossing options

Zero-crossing control: |Use local settings v| Algorithm: Nonadaptive -
Time tolerance: 10%128%eps Signal threshold: |auto
Number of consecutive zero crossings: 1000
1 3
[OK] | Cancel | | Help | Apply

Click OK to close the Configuration Parameters dialog box.

2 Save the model.
Running the Simulation

After you've put together a block diagram and specified the initial settings for
your model, you can run the simulation.

1-27

1 Model Construction

1-28

1 The input signal for the force is provided by the Signal Builder block. The
signal profile is shown in the illustration below. It starts with a value of 0,
then at 4 seconds there is a step change to 1, and then it changes back to 0

at 6 seconds. This is the default profile.

B signal Builder (mech_simple/Signal Builder) =] ===
File Edit Group Signal Axes Help E
BH| {BE « o | —~TH|EFREE » 1= ¢8|
Active Group: | Group 1 W IIENE
Signal 1
S S SR e
1
e .
: ; L . .
i i i i I i i i i j
0 1 2 3 4 5 6 T 8 9 10
Time (sec)
Left Point Right Point Signal 1 {shown) P
Name: Signal 1 T e
Index: 1 - Y: Y:
Click to select signal |S\gnal1 (#1) [¥MWin ¥Max |

The Velocity scope outputs the
outputs the mass displacement
scopes to open them.

mass velocity, and the Position scope
as a function of time. Double-click both

To run the simulation, click I\:’I in the model window toolbar. The

Simscape solver evaluates the model, calculates the initial conditions, and
runs the simulation. For a detailed description of this process, see “How
Simscape Simulation Works” on page 2-5. Completion of this step may take
a few seconds. The message in the bottom-left corner of the model window

provides the status update.

Creating and Simulating a Simple Model

3 Once the simulation starts running, the Velocity and Position scope
windows display the simulation results, as shown in the next illustration.

u Velocity

-0.005

0.m L
0

Time offzet: 0

o]l sl

2D Qak EB5K ek -

n Position

(=[O =)

25 Qen | HE% Baw -
-4

In the beginning, the mass is at rest. Then at 4 seconds, as the input signal
changes abruptly, the mass velocity spikes in the positive direction and
gradually returns to zero. The mass position at the same time changes
more gradually, on account of inertia and damping, and stays at the new

1-29

1 Model Construction

value as long as the force is acting upon it. At 6 seconds, when the input
signal changes back to zero, the velocity gets a mirror spike, and the mass
gradually returns to its initial position.

You can now adjust various inputs and block parameters and see their effect
on the mass velocity and displacement.

Adjusting the Parameters
After running the initial simulation, you can experiment with adjusting
various inputs and block parameters.

Try the following adjustments:

1 Change the force profile.

2 Change the model parameters.

3 Change the mass position output units.
Changing the Force Profile

This example shows how a change in the input signal affects the force profile,
and therefore the mass displacement.

1 Double-click the Signal Builder block to open it.

2 Click the first vertical segment of the signal profile and drag it from 4 to 2
seconds, as shown below. Close the block dialog.

1-30

Creating and Simulating a Simple Model

B signal Builder (mech_simple/Signal Builder) * EI@

File Edit Group Signal Axes Help E

SH|{BRE oo |[—~T0EFREE 0y 1 | 8|

Active Group: | Group 1 -

Signal 1

Left Point Right Point
Name: Signal 1 T e
Index: 1 - Y: Y:
Click to select point or segment, Shift+click to add points | Signal 1 (#1) [¥Min ¥Max]

3 Run the simulation. The simulation results are shown in the following
illustration.

1-31

1 Model Construction

R Velocity E=S EoB =<~
2D Qak EB5K ek -

-0.005

-0.01L
0

Time offzet: 0

B Position == R[5
25 (Qak| HES% 08 % -
-4

_xla

Changing the Model Parameters

In our model, the force acts on a mass against a translational spring and
damper, connected in parallel. This example shows how changes in the spring
stiffness and damper viscosity affect the mass displacement.

1-32

Creating and Simulating a Simple Model

1 Double-click the Translational Spring block. Set its Spring rate to 2000

N/m.

2 Run the simulation. The increase in spring stiffness results in smaller
amplitude of mass displacement, as shown in the following illustration.

BB Qe Rk Da R
-4

w10

& Position E=S EoB =<~

-

3 Next, double-click the Translational Damper block. Set its Damping

coefficient to 500 N/ (m/s).

4 Run the simulation. Because of the increase in viscosity, the mass is slower
both in reaching its maximum displacement and in returning to the initial
position, as shown in the following illustration.

1-33

1 Model Construction

u Position

%10
12

o]l sl

BB Qe ORREER -
4

Changing the Mass Position Output Units

In our model, we have used the PS-Simulink Converter block in its default
parameter configuration, which does not specify units. Therefore, the
Position scope outputs the mass displacement in the default length units,
that is, in meters. This example shows how to change the output units for the
mass displacement to millimeters.

1 Double-click the PS-Simulink Converter block. Type mm in the Output
signal unit combo box and click OK.

2 Run the simulation. In the Position scope window, click IEI to autoscale
the scope axes. The mass displacement is now output in millimeters, as
shown in the following illustration.

1-34

Creating and Simulating a Simple Model

& Position E=S EoB =<~
2D Qak EB5K ek -

1-35

1 Model Construction

Modeling Best Practices

1-36

In this section...

“Grounding Rules” on page 1-36

“Avoiding Numerical Simulation Issues” on page 1-40

Grounding Rules

This section contains guidelines for using domain-specific reference blocks
(such as Electrical Reference, Mechanical Translational Reference, and so
on) in Simscape diagrams, along with examples of correct and incorrect
configurations.

Add reference blocks to your models according to the following rules:

¢ “Each Domain Requires at Least One Reference Block” on page 1-36
¢ “Each Circuit Requires at Least One Reference Block” on page 1-37

e “Multiple Connections to the Domain Reference Are Allowed Within a
Circuit” on page 1-39

Each Domain Requires at Least One Reference Block

Within a physical network, each domain must contain at least one reference
block of the appropriate type. For example, the electromechanical model
shown 1in the following diagram has both Electrical Reference and Rotational
Reference blocks attached to the appropriate circuits.

Modeling Best Practices

—H

Sohver

C onfiguration Motor
Inertia J
£ -HyN My o
| Rotor
Resistance R Rotational)
1.5% Electromechanical HEE!I Rotaticnal
Comverter L. . Motion Sensor
W
: N N [

\

Each Circuit Requires at Least One Reference Block
Each topologically distinct circuit within a domain must contain at least one
reference block. Some blocks, such as an Ideal Transformer, interface two
parts of the network but do not convey information about signal levels relative
to the reference block. In the following diagram, there are two separate

electrical circuits, and the Electrical Reference blocks are required on both

sides of the Ideal Transformer block.

RPM

1-37

Model Construction

1-38

AC Violtage Sowce ‘ o W | volage Sersor

5

ldeal Transformer

7
=
[#y]
4]
¥

-
il
L)

The next diagram would produce an error because it is lacking an electrical
reference in the circuit of the secondary winding.

Sohver
C onfiguration

AL Voltage Source : o Y| |volege Semsor

o

ldeal Transformer

7
=
o
7]
¥

-
L

The following diagram, however, will not produce an error because the
resistor defines the output voltage relative to the ground reference.

Modeling Best Practices

Sohver
C onfiguration

AN

Resistor

AC Voltage Sowce

il

-3

ldeal Transformer

‘Voltage Sensor

<

7
5
[¥p]
7]
¥

Multiple Connections to the Domain Reference Are Allowed

Within a Circuit

More that one reference block may be used within a circuit to define multiple
connections to the domain reference:

¢ Electrical conserving ports of all the blocks that are directly connected to
ground must be connected to an Electrical Reference block.

e All translational ports that are rigidly clamped to the frame (ground) must
be connected to a Mechanical Translational Reference block.

e All rotational ports that are rigidly clamped to the frame (ground) must be

connected to a Mechanical Rotational Reference block.

¢ Hydraulic conserving ports of all the blocks that are referenced to
atmosphere (for example, suction ports of hydraulic pumps, or return ports
of valves, cylinders, pipelines, if they are considered directly connected to
atmosphere) must be connected to a Hydraulic Reference block.

For example, the following diagram correctly indicates two separate
connections to an electrical ground.

1-39

1 Model Construction

1-40

—(H

Sover
Configuration hotor
Inertiz J
£-A00M
| Rofor
Resistance R Rotaticnal _
1.5V Electromechanical Ideal Rotationsl
Converter L Motion Sensor
¥
. slrssk 1

-3

RPM

Avoiding Numerical Simulation Issues

Certain configurations of physical modeling blocks can cause numerical
difficulties or slow down your simulation. When this happens, Simscape
solver issues a warning in the MATLAB workspace and, if it fails to initialize,
a Simscape error.

In electrical circuits, common examples that can cause this behavior include
voltage sources connected in parallel with capacitors, inductors connected in
series with current sources, voltage sources connected in parallel, and current
sources connected in series. Often, the cause of the numerical difficulty is
immediately apparent. For example, two voltage sources in parallel must
have identical voltage values; otherwise, the ports connecting them would not
be physical conserving ports. In practical circuits, topologies such as parallel
voltage sources are possible, and small difference in their instantaneous
voltages is possible due to parasitic series resistance.

Modeling Best Practices

Note Mathematically, these topologies result in Index-2 differential algebraic
equations (DAEs). Their solution requires two differentiations of the
constraint equations and, as such, it is numerically better to avoid these
component topologies where possible.

There are two approaches to resolving these difficulties. The first is to change
the circuit to an equivalent simpler one. In the example of two parallel voltage
sources, one source can be simply deleted. The same applies to two series
current sources, the deleted one being replaced by a short circuit. For some
circuit topologies, however, it is not possible to find an equivalent simpler one
that resolves the problem, and the second approach is needed.

The second approach is to include small parasitic resistances in the
component. In the Simscape Foundation library, the Capacitor and Inductor
blocks include such parasitic terms, so that you can connect capacitances in
parallel with voltage sources and inductors in series with current sources. If
your circuit does not have any such topologies, then you can change the default
parasitic terms to zero. Note that other blocks do not contain these parasitic
terms, for example, the Mutual Inductor block. Therefore, if you wanted to
connect a mutual inductor primary in series with a current source, you would
need to introduce your own parasitic conductance across the primary winding.

Example of Using a Parasitic Resistance to Avoid Numerical
Simulation Issues

The following diagram models a differentiator that might be used as part of a
Proportional-Integral-Derivative (PID) controller. You can open this model by
typing ssc_differentiator in the MATLAB Command Window.

1-41

1 Model Construction

- R1
== W [F—p|FS 5 > I:l
2 pe-k, 1THHz ; 4f_“ = —
T FS-Simulink Voltage
ekl Voltage Comverter
Sensor
I % flzj=0 | L
1 Solver -
= Configuration

Simulate the model, and you will see that the output is minus the derivative
of the input sinusoid.

P

n‘l.lfo!tage EI@
Akl NS EBaSF -

Now open the capacitor C block dialog, and set the series resistance to zero.
The model now runs very slowly, and issues a warning:

Warning: problems possible for transient initialization, as well as stepsize control
for transient solve, due to equations of one or more components:

1-42

Modeling Best Practices

'ssc_differentiator/2V pk-k, 1KHz'
'ssc_differentiator/Op-Amp'’
'ssc_differentiator/C'

The cause of the warning is that the circuit effectively connects the voltage
source in parallel with the capacitor. This is because an ideal op-amp
satisfies V+ = V- , where V+ and V- are the noninverting and inverting inputs,
respectively. This is an example where it is not possible to replace the circuit
with an equivalent simpler one, and a parasitic small resistance has to be
introduced.

1-43

1 Model Construction

Modeling Pneumatic Systems

1-44

In this section...

“Intended Applications” on page 1-44
“Assumptions and Limitations” on page 1-44
“Fundamental Equations” on page 1-45
“Network Variables” on page 1-46

“Connection Constraints” on page 1-47

“References” on page 1-47

Intended Applications

The Foundation library contains basic pneumatic elements, such as orifices,
chambers, and pneumatic-mechanical converters, as well as pneumatic
sensors and sources. Use these blocks to model pneumatic systems, for
applications such as:

¢ Factory automation — basic pneumatic linear/rotational actuators, valves
(variable orifices), and air supply

® Robotics — robotic arms and haptic interfaces

® Gaseous transportation systems and pipelines

You can also use these blocks to model dry air and low-pressure flows, for
example, for HVAC applications.

Assumptions and Limitations

Pneumatic block models are based on the following assumptions:

* Working fluid is an ideal gas satisfying the ideal gas law.

e Specific heats at constant pressure and constant volume, ¢, and ¢, are
constant.

Modeling Pneumatic Systems

® Processes are adiabatic, that is, there is no heat transfer between
components and the environment (except for components with a separate
thermal port).

* Gravitational effects can be neglected, that is, underlying equations contain
no head pressures due to gravity.

Fundamental Equations
The energy balance for a control volume [1] is

dE v? 02
d;UZch_ch+z mi{hi"'?l"'gzi] _z mo(ho"'?o"'gzaj
14 0

where
E,, Control volume total energy
Q. Heat energy per second added to the gas through the boundary
w,, Mechanical work per second performed by the gas
h, h, Inlet and outlet enthalpies
Uy U, Gas inlet and outlet velocities
g Acceleration due to gravity
z, 2, Elevations at inlet and outlet ports
m, m, Mass flow rates in and out of the control volume

The equation is an accounting balance for the energy of the control volume. It
states that the rate of energy increase or decrease within the control volume
equals the difference between the rates of energy transfer in and out across the
boundary. The mechanisms of energy transfer are heat and work, as for closed
systems, and the energy that accompanies the mass entering and exiting.

Pneumatic block models make several simplifying assumptions, as described
previously.

1-45

1 Model Construction

The ideal gas law relates pressure, density, and temperature:

p=pRT
where
p Absolute pressure
p Gas density
R Specific gas constant
T Absolute gas temperature

Also, the specific enthalpies for an ideal gas at temperature 7" and constant
pressure and constant volume are given by:

The pneumatic components also use the mass continuity equation:

dp 1

dt =V(mi -m,)

where p is the density of the gas within the component. For components with
no internal mass of gas, the equation simplifies to:

G=m;=m,

where G is the mass flow rate through the component.

For specific equations used in each block, see the block reference pages.

Network Variables

The Across variables are pressure and temperature, and the Through
variables are mass flow rate and heat flow. Note that these choices result in

1-46

Modeling Pneumatic Systems

a pseudo-bond graph, because the product of pressure and mass flow rate
1s not power.

Connection Constraints

Every node in a pneumatic network must have a defined temperature as
well as pressure. This rule places some constraints on how you connect
the pneumatic elements. In effect, every node should have a volume of
fluid associated with it. When the ideal gas law is applied, this volume

of fluid determines the relationship between temperature and pressure.
Some elements already have a volume of fluid associated with them, and
therefore having just one of these components connected to a node satisfies
this condition. Such blocks include Constant Volume Pneumatic Chamber,
Pneumatic Piston Chamber, Rotary Pneumatic Piston Chamber, and
Pneumatic Atmospheric Reference.

An exception to the above rule (that every node must have a volume of fluid
associated with it) occurs when two nodes are connected by a component for
which the heat equation says that the temperatures are equal. In this case,
just one of the nodes needs to be connected to a component with associated
volume of fluid. Such components include the pressure and flow rate sources.

For models that represent an actual pneumatic network, these constraints
should have no impact. For example, connecting two orifices in series makes
no physical sense because the underlying assumption of the orifice equation
1s that gas 1s discharged into a volume of fluid. Therefore, modeling actual
physical systems should automatically satisfy these constraints.

References

[1] Moran M.J. and Shapiro H.N. Fundamentals of Engineering
Thermodynamics. Second edition. New York: John Wiley & Sons, 1992.

1-47

1 Model Construction

1-48

Model Simulation

¢ “How Simscape Models Represent Physical Systems” on page 2-2
* “How Simscape Simulation Works” on page 2-5

e “Setting Up Solvers for Physical Models” on page 2-11

¢ “Customizing Solvers for Physical Models” on page 2-19
e “Troubleshooting Simulation Errors” on page 2-28

® “Code Generation” on page 2-35

e “Real-Time Simulation” on page 2-39

* “Finding an Operating Point” on page 2-48

¢ “Linearizing at an Operating Point” on page 2-55

® “Linearize an Electronic Circuit” on page 2-64

¢ “Limitations” on page 2-77

e “References” on page 2-83

2 Model Simulation

How Simscape Models Represent Physical Systems

In this section...

“Representations of Physical Systems” on page 2-2
“Differential, Differential-Algebraic, and Algebraic Systems” on page 2-2
“Stiffness” on page 2-3

“Events and Zero Crossings” on page 2-3

“Working with Simscape Representation” on page 2-3

Representations of Physical Systems

This section describes important characteristics of the mathematical
representations of physical systems, and how Simscape software implements
such representations. You might find this overview helpful if you:

e Require details of such representations to improve your model fidelity or
simulation performance.

® Are constructing your Simscape model or its components with the Simscape
language.

® Need to troubleshoot Simscape modeling or simulation failures.

Mathematical representations are the foundation for physical simulation. For
more information about simulation, see “How Simscape Simulation Works”
on page 2-5.

Differential, Differential-Algebraic, and Algebraic
Systems

The mathematical representation of a physical system contains ordinary
differential equations (ODEs), algebraic equations, or both.

® ODEs govern the rates of change of system variables and contain some or
all of the time derivatives of the system variables.

e Algebraic equations specify functional constraints among system variables,
but contain no time derivatives of system variables.

How Simscape™ Models Represent Physical Systems

e Without algebraic constraints, the system is differential (ODEs).
e Without ODEs, the system is algebraic.
e With ODEs and algebraic constraints, the system is mixed

differential-algebraic (DAEs).

A system variable is differential or algebraic, depending on whether or not its
time derivative appears in the system equations.

Stiffness

A mathematical problem is stiff if the solution you are seeking varies slowly,
but there are other solutions within the error tolerances that vary rapidly. A
stiff system has several intrinsic time scales of very different magnitude [1].

A stiff physical system has one or more components that behave “stiffly” in the
ordinary sense, such as a spring with a large spring constant. Mathematical
equivalents include quasi-incompressible fluids and low electrical inductance.
Such systems often exhibit high frequency oscillations in some of their
components or modes.

Events and Zero Crossings

Events are discontinuous changes in system state or dynamics as the system
evolves in time; for example, a valve opening, or a hard stop.

A zero crossing is a specific event type, represented by the value of a
mathematical function changing sign.

Working with Simscape Representation

A Simscape model is equivalent to a set of equations representing one or more
physical systems as physical networks.

e Start by assuming that your physical network is a DAE system: a mix of
differential and algebraic equations and variables.

Remember that some physical networks are represented by ODEs only.

¢ Physical networks may contain stiff differential equations.

2-3

2 Model Simulation

2-4

¢ Identify discrete and continuous components that might change
discontinuously during a simulation.

Creating and Detecting Zero Crossings in Simscape Models

Simulink and Simscape software have specific methods for detecting and
locating zero-crossing events. For general information, see “Zero-Crossing
Detection” in the Simulink documentation.

Your model can contain zero-crossing conditions arising from several sources:

¢ Simscape and normal Simulink blocks copied from their respective block
libraries

e Expressions programmed in the Simscape language
You can disable zero-crossing detection on individual blocks, or globally across

the entire model. Zero-crossing detection often improves simulation accuracy,
but can slow simulation speed.

Tip If the exact times of zero crossings are important in your model,
then keep zero-crossing detection enabled. Disabling it can lead to major
simulation inaccuracies.

Enabling and Disabling Zero-Crossing Conditions in Simscape
Language. In the Simscape language, you can create or avoid Simulink
zero-crossing conditions in your model by switching between different
implementations of discontinuous conditional expressions. You can:

e Use relational operators, which create zero-crossing conditions. For
example, programming the operator relation: a < b creates a zero-crossing
condition.

e Use relational functions, which do not create zero-crossing conditions. For
example, programming the functional relation: 1t(a,b) does not create a
zero-crossing condition.

How Simscape™ Simulation Works

How Simscape Simulation Works

In this section...

“Simscape Simulation Phases” on page 2-5
“Model Validation” on page 2-7

“Network Construction” on page 2-7
“Equation Construction” on page 2-8

“Initial Conditions Computation” on page 2-8

“Transient Initialization” on page 2-9

“Transient Solve” on page 2-9

Simscape Simulation Phases

You might find this brief overview helpful for constructing models and
understanding errors. For more information, see “How Simscape Models
Represent Physical Systems” on page 2-2.

Simscape software gives you multiple ways to simulate and analyze physical
systems in the Simulink environment. Running a physical model simulation
is similar to simulating any Simulink model. It entails setting various
simulation options, starting the simulation, and viewing the simulation
results. This topic describes various aspects of simulation specific to Simscape
models. For specifics of simulating and analyzing with individual Simscape
add-on products, refer to the documentation for those individual add-on
products.

This flow chart presents the Simscape simulation sequence.

2-5

2 Model Simulation

Mlode! Validation

I
¥

M etinr ok Construclion

|
¥

Equation Sonatruction

I
¥

Initial Cenditicnz

I
¥

Tranzient Intizalzation

I
¥

Tranzient Sohwe

!

The flow chart consists of the following major phases:

Event

1 “Model Validation” on page 2-7
2 “Network Construction” on page 2-7
3 “Equation Construction” on page 2-8

4 “Initial Conditions Computation” on page 2-8

How Simscape™ Simulation Works

5 “Transient Initialization” on page 2-9

6 “Transient Solve” on page 2-9

Model Validation

The Simscape solver first validates the model configuration and checks your
data entries from the block dialog boxes.

* Each topologically distinct physical network in a diagram requires exactly
one Solver Configuration block.

¢ If your model contains hydraulic elements, each topologically distinct
hydraulic circuit in a diagram must connect to a Custom Hydraulic Fluid
block (or Hydraulic Fluid block, available with SimHydraulics block
libraries). These blocks define the fluid properties that act as global
parameters for all the blocks that connect to the hydraulic circuit. If no
hydraulic fluid block is attached to a loop, the hydraulic blocks in this loop
use the default fluid. However, more than one hydraulic fluid block in
a loop generates an error.

Similarly, if your model contains pneumatic elements, default gas
properties for a pneumatic network are for dry air and ambient conditions
of 101325 Pa and 20 degrees Celsius. If you attach a Gas Properties
block to a pneumatic circuit, you can change gas properties and ambient
conditions for all the blocks connected to the circuit. However, more than
one Gas Properties block in a pneumatic circuit generates an error.

¢ Signal units specified in a Simulink-PS Converter block must match
the input type expected by the Simscape block connected to it. For
example, when you provide the input signal for an Ideal Angular Velocity
Source block, specify angular velocity units, such as rad/s or rpm, in the
Simulink-PS Converter block, or leave it unitless. Similarly, units specified
in a PS-Simulink Converter block must match the type of physical signal
provided by the Simscape block outport.

Network Construction

After validating the model, the Simscape solver constructs the physical
network based on the following principles:

® Two directly connected Conserving ports have the same values for all their
Across variables (such as voltage or angular velocity).

2 Model Simulation

¢ Any Through variable (such as current or torque) transferred along
the Physical connection line is divided among the multiple components
connected by the branches. For each Through variable, the sum of all its
values flowing into a branch point equals the sum of all its values flowing
out.

Equation Construction

Based on the network configuration, the parameter values in the block dialog
boxes, and the global parameters defined by the fluid properties, if applicable,
the Simscape solver constructs the system of equations for the model.

These equations contain system variables of the following types:

®* Dynamic — Time derivatives of these variables appear in equations.
Dynamic variables are the independent states for simulation.

e Algebraic — Time derivatives of these variables do not appear in equations.
The states of algebraic variables are always dependent, on dynamic
variables, other algebraic variables, or inputs.

Initial Conditions Computation

The Simscape solver computes the initial conditions only once, in the
beginning of simulation (¢=0). In the Solver block dialog box, the default is
that the Start simulation from steady state check box is not selected.

The solver computes the initial conditions by setting all dynamic variables
to 0, except those corresponding to blocks that have an initial condition field
in their block dialog boxes, and solving for all the system variables. The
blocks with initial conditions have their dynamic variables set according to
the user-provided value in the block dialog. Initial conditions can be set only
on dynamic variables, because dynamic variables are the independent states
for simulation. For example, the Translational Spring block has the Initial
deformation parameter, so the corresponding spring position state is set
to the initial offset specified in the block dialog box. To find which blocks
have initial conditions specified through their dialog boxes, refer to the block
reference documentation.

The initial conditions for dependent dynamic states must be set consistently.
For example, the initial voltages on two parallel, ideal capacitors must be

2-8

How Simscape™ Simulation Works

equal. When the solver detects dependent dynamic variables, it performs a
check and issues an error if the initial conditions on dynamic states are not
set consistently.

Finding an Initial Steady State

When you select the Start simulation from steady state check box, the
solver attempts to find the steady state that would result if the inputs to the
system were held constant for a long enough time, starting from the initial
state obtained from the initial conditions computation just described. If the
steady-state solve succeeds, the state found is some steady state (within
tolerance), but not necessarily the state expected from the given initial
conditions. Steady state means that the system variables are no longer
changing with time. Simulation then starts from this steady state.

Note If the simulation fails at or near the start time when you use the
Start simulation from steady state option, try clearing the check box and
simulating with the default initial conditions computation only.

Transient Initialization

After computing the initial conditions, or after a subsequent event (such

as a discontinuity resulting, for example, from a valve opening, or from a
hard stop), the Simscape solver performs transient initialization. Transient
initialization fixes all dynamic variables and solves for algebraic variables
and derivatives of dynamic variables. The goal of transient initialization is to
provide a consistent set of initial conditions for the next phase, transient solve.

Transient Solve

Finally, the Simscape solver performs transient solve of the system of
equations. In transient solve, continuous differential equations are integrated
in time to compute all the variables as a function of time.

The solver continues to perform the simulation according to the results of the
transient solve until the solver encounters an event, such as a zero crossing or
discontinuity. The event may be within the physical network or elsewhere in

the Simulink model. If the solver encounters an event, the solver returns to

2-9

2 Model Simulation

the phase of transient initialization, and then back to transient solve. This
cycle continues until the end of simulation.

2-10

Setting Up Solvers for Physical Models

Setting Up Solvers for Physical Models

In this section...

“About Simulink and Simscape Solvers” on page 2-11

“Choosing Simulink and Simscape Solvers” on page 2-11

“Harmonizing Simulink and Simscape Solvers” on page 2-13

About Simulink and Simscape Solvers

This section explains how to select solvers for physical simulation. Proper
simulation of Simscape models requires certain changes to Simulink defaults
and consideration of physical simulation trade-offs. For recommended choices,
see “Customizing Solvers for Physical Models” on page 2-19.

Choosing Simulink and Simscape Solvers

Simulink and Simscape solver technologies provide a range of tools to
simulate physical systems, including the powerful Simscape technique of
local solvers. You choose global, or model-wide, solvers through Simulink.
After making these choices, check that they are consistent; see “Harmonizing
Simulink and Simscape Solvers” on page 2-13.

* “Working with Global Simulink Solvers” on page 2-11
* “Working with Local Simscape Solvers” on page 2-12

Working with Global Simulink Solvers

In the Configuration Parameters dialog box of your model, on the Solver
pane, the solver and related settings that you select are global choices. For
more information, see “Choose a Solver” in the Simulink documentation.

When you first create a model, the default Simulink solver is ode45. To select
a different solver, follow a procedure similar to the procedure in “Modifying

Initial Settings” on page 1-26.

® You can choose one from a suite of both variable-step and fixed-step solvers.
A variable-step solver is the default.

2-11

2 Model Simulation

2-12

® You can also select from among explicit and implicit solvers. An explicit
solver is the default. But for physical models, MathWorks® recommends
1implicit solvers, such as odel4x, ode23t, and odel5s. Implicit solvers
require fewer time steps than explicit solvers, such as ode45, ode113, and
odel.

See “Switching from the Default Explicit Solver to Other Simulink Solvers”
on page 2-14.

e [f all the Simulink and Simscape states in your model are discrete,
Simulink automatically switches to a discrete solver and issues a warning.
Otherwise, a continuous solver is the default.

® By default, Simulink variable-step solvers attempt to locate events in
time by zero-crossing detection. See “Enabling or Disabling Simulink
Zero-Crossing Detection” on page 2-17.

Working with Local Simscape Solvers

You can switch one or more physical networks to a local implicit, fixed-step
Simscape solver by selecting Use local solver in the network Solver
Configuration block. The solver and related settings you make in each Solver
Configuration block are specific to the connected physical network and can
differ from network to network.

A physical network using a local solver appears to the global Simulink solver
as if it has discrete states. You can still use any continuous global solver.

Choosing Local Solvers and Sample Times. To use a local solver, choose
a solver type (Backward Euler or Trapezoidal Rule) and a sample time.
Backward Euler is the default.

Choosing Fixed-Cost Simulation. You can select a fixed-cost simulation
for one or more physical networks by selecting Use fixed-cost runtime
consistency iterations, as well as Use local solver, and fixing the number
of nonlinear and mode iterations. Fixed-cost simulation requires a global
fixed-step solver.

Choosing Multirate Simulation. With the local solver option, you can
perform multirate simulations, with:

Setting Up Solvers for Physical Models

® Different sample times in different physical networks, through their
respective Solver Configuration blocks

® A sample-based Simulink block in the model with a sample time different
from the Solver Configuration block or blocks

Harmonizing Simulink and Simscape Solvers

Your Simulink and Simscape solver choices must work together consistently.
To ensure consistency of your Simulink and Simscape solver choices for

a particular model, open the model Configuration Parameters dialog box.
From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. Review and adjust the following settings.

® “Switching from the Default Explicit Solver to Other Simulink Solvers”
on page 2-14

¢ “Filtering Input Signals and Providing Time Derivatives” on page 2-15

e “Enabling or Disabling Simulink Zero-Crossing Detection” on page 2-17

e “Making Multirate Simulation Consistent” on page 2-18

2-13

2 Model Simulation

2-14

% Configuration Parameters: mech_simple/Configuration (Active)

Select: Editing

B Editing Mode: Full v|
i~ Data Import/Export
- Optimization
+- Diagnostics
i~Hardware Implementation | Explicit solver used in model containing Physical Networks blocks: |warning +
iModel Referencing

?-Simulation Target Zero-crossing control is globally disabled in Simulink: warning ~
?-Code Generation
§ Simscape

- SimMechanics 16
+-SimMechanics 2G

Physical Networks Model-Wide Simulation Diagnostics

Data Logging

Log simulation data: none v|

Log simulation statistics
Workspace variable name: |simlog
Decimation: 1

Limit data points

Data history (last N steps): |5000

“ T

" [oK]| Cancel || Help

m

Apply

Simscape™ Pane of the Configuration Parameters Dialog Box

Switching from the Default Explicit Solver to Other Simulink
Solvers

If you do not modify the default (explicit) solver, your performance may not be
optimal. Implicit solvers are better for most physical simulations. For more
information about implicit solvers and physical systems, see “Customizing
Solvers for Physical Models” on page 2-19.

Diagnostic Messages About Explicit Solvers. When you use an explicit
solver in a model containing Simscape blocks, the system issues a warning
to alert you to a potential problem.

Setting Up Solvers for Physical Models

To turn off this default warning or to change it to an error message, go to the
Simscape pane of the Configuration Parameters dialog box:

1 From the Explicit solver used in model containing Physical
Networks blocks drop-down list, select the option that you want:

® warning — If the model uses an explicit solver, the system issues a
warning upon simulation. This is the default option that alerts you to a
potential problem if you use the default solver.

® error — If the model uses an explicit solver, the system issues an error
message upon simulation. If your model is stiff, and you do not want to
use explicit solvers, select this option to avoid future errors.

® none — If the model uses an explicit solver, the system issues no warning
or error message upon simulation. If you want to work with explicit
solvers, in particular for models that are not stiff, select this option.

2 Click OK.

Filtering Input Signals and Providing Time Derivatives

You may need to provide time derivatives of some of the input signals,
especially if you use an explicit solver. One way of providing the necessary
input derivatives is by filtering the input through a low-pass filter. Input
filtering makes the input signal smoother and generally improves model
performance. The additional benefit is that the Simscape engine computes
the time derivatives of the filtered input. The first-order filter provides
one derivative, while the second-order filter provides the first and second
derivatives. If you use input filtering, it is very important to select the
appropriate value for the filter time constant.

The filter time constant controls the filtering of the input signal. The filtered
input follows the true input but is smoothed, with a lag on the order of the
time constant that you choose. Set the time constant to a value no larger than
the smallest time interval in the system that interests you. If you choose

a very small time constant, the filtered input signal is closer to the true
input signal. However, this filtered input signal increases the stiffness of
the system and slows the simulation.

Instead of using input filtering, you can provide time derivatives for the input
signal directly, as additional physical signals.

2-15

2 Model Simulation

2-16

You can control the way you provide time derivatives for each input signal by
configuring the Simulink-PS Converter block connected to that input signal:

1 Open the Simulink-PS Converter block dialog box.

2 Click the Input handling tab.

o

E Block Parameters: Simulink-P5 Converter @
Simulink-P5 Converter

Converts the unitless Simulink input signal to a Physical Signal.

The unit expression in 'Input signal unit' parameter is associated with
the unitless Simulink input signal and determines the unit assigned to
the Physical Signal.

‘Apply affine conversion' check box is only relevant for units with
offset (such as temperature units).

There are three options to handle the input: you can use it as is,
filter input, or provide the input derivatives through additional signal
ports. Input filtering also provides time derivatives. The first-order
filter provides one derivative, while the second-order filter provides
the first and second derivatives.

Parameters
Units | Input Handling
Filtering and ; ;
derivatives: Use input as is
OK] I Cancel I I Help Apply

3 To turn on input filtering, set the Filtering and derivatives parameter to
Filter input. Select the first-order or second-order filter, by using the

Setting Up Solvers for Physical Models

Input filtering order parameter, and set the appropriate Input filtering
time constant parameter value for your model.

4 To avoid filtering the input signal, set the Filtering and derivatives
parameter to Provide input derivative(s). Then set the Input
derivatives parameter value:

® Provide first derivative — If you select this option, an additional
Simulink input port appears on the Simulink-PS Converter block, to let
you connect the signal providing input derivatives.

e Provide first and second derivatives — If you select this option,
two additional Simulink input ports appear on the Simulink-PS
Converter block, to let you connect the signals providing input
derivatives.

Enabling or Disabling Simulink Zero-Crossing Detection

By default, Simulink tracks an important class of simulation events by
detecting zero crossings. With a global variable-step solver and without a
local solver, Simulink attempts to locate the simulated times of zero crossings,
if present. See “Working with Simscape Representation” on page 2-3.

Diagnostic Messages About Globally Disabling Zero-Crossing
Detection. You can globally disable zero-crossing detection in the Solver
pane of the Configuration Parameters dialog box, under Zero-crossing
options. If you do, and if you are using a global variable-step solver without
a local solver, the system issues a warning or error when you simulate with
Simscape blocks.

You can choose between warning and error messages in the Simscape pane
of the Configuration Parameters dialog box.

1 From the Zero-crossing control is globally disabled in Simulink
drop-down list, select the option that you want, if you globally disable
zero-crossing detection:

e warning — The system issues a warning message upon simulation. This
option is the default.

¢ error — The system issues an error message upon simulation, which
stops.

2-17

2 Model Simulation

2-18

2 Click OK.

Making Multirate Simulation Consistent
The sample time or step size of the global Simulink solver must be the
smallest time step of all the solvers in a multirate Simscape simulation.

To avoid simulation errors in sample time propagation, go to the Solver pane
in the Configuration Parameters dialog box and select the Automatically
handle rate transition for data transfer check box.

Customizing Solvers for Physical Models

Customizing Solvers for Physical Models

In this section...

“Important Concepts and Choices in Physical Simulation” on page 2-19

“Making Optimal Solver Choices for Physical Simulation” on page 2-22

Important Concepts and Choices in Physical
Simulation

This section describes advanced concepts and trade-offs you might want to
consider as you configure and test solvers and other simulation settings

for your Simscape model. For a summary of recommended settings, see
“Making Optimal Solver Choices for Physical Simulation” on page 2-22. For
background information, consult “How Simscape Models Represent Physical
Systems” on page 2-2 and “How Simscape Simulation Works” on page 2-5.

® “Variable-Step and Fixed-Step Solvers” on page 2-19

e “Explicit and Implicit Solvers” on page 2-20

e “Full and Sparse Linear Algebra” on page 2-21

* “Event Detection and Location” on page 2-21

® “Unbounded, Bounded, and Fixed-Cost Simulation” on page 2-21
® “Global and Local Solvers” on page 2-22

Variable-Step and Fixed-Step Solvers

Variable-step solvers are the usual choice for design, prototyping, and
exploratory simulation, and to precisely locate events during simulation.
They are not useful for real-time simulation and can be costly if there are
many events.

A variable-step solver automatically adjusts its step size as it moves forward
in time to adapt to how well it controls solution error. You control the
accuracy and speed of the variable-step solution by adjusting the solver
tolerance. With many variable-step solvers, you can also limit the minimum
and maximum time step size.

2-19

2 Model Simulation

2-20

Fixed-step solvers are recommended or required if you want to make
performance comparisons across platforms and operating systems, to
generate a code version of your model, and to bound or fix simulation cost. A
typical application is real-time simulation. For more information, see “Code
Generation” on page 2-35 and “Real-Time Simulation” on page 2-39.

With a fixed-step solver, you specify the time step size to control the accuracy
and speed of your simulation. Fixed-step solvers do not adapt to improve
accuracy or to locate events. These limitations can lead to significant
simulation inaccuracies.

Explicit and Implicit Solvers

The degree of stiffness and the presence of algebraic constraints in your
model influence the choice between an explicit or implicit solver. Explicit and
implicit solvers use different numerical methods to simulate a system.

¢ [f the system is a nonstiff ODE system, choose an explicit solver. Explicit
solvers require less computational effort than implicit solvers, if other
simulation characteristics are fixed.

To find a solution for each time step, an explicit solver uses a formula based
on the local gradient of the ODE system.

e [f the system is stiff, use an implicit solver. Though an explicit solver may
require less computational effort, for stiff problems an implicit solver is
more accurate and often essential to obtain a solution. Implicit solvers
require per-step iterations within the simulated time steps. With some
implicit solvers, you can limit or fix these iterations.

An implicit solver starts with the solution at the current step and
iteratively solves for the solution at the next time step with an algebraic
solver. An implicit algorithm does more work per simulation step, but
can take fewer, larger steps.

e [f the system contains DAEs, even if it is not stiff, use an implicit solver.
Such solvers are designed to simultaneously solve algebraic constraints
and integrate differential equations.

Customizing Solvers for Physical Models

Full and Sparse Linear Algebra

When you simulate a system with more than one state, the solver manipulates
the mathematical system with matrices. For a large number of states, sparse
linear algebra methods applied to large matrices can make the simulation
more efficient.

Event Detection and Location
Events, in most cases, occur between simulated time steps.

* Fixed-step solvers detect events after “stepping over” them, but cannot
adaptively locate events in time. This can lead to large inaccuracies or
failure to converge on a solution.

e Variable-step solvers can both detect events and estimate the instants
when they occur by adapting the timing and length of the time steps.

Tip To estimate the timing of events or rapid changes in your simulation, use
a variable-step solver.

If your simulation has to frequently adapt to events or rapid changes by
changing its step size, much or all of the advantage of implicit solvers over
explicit solvers 1is lost.

Unbounded, Bounded, and Fixed-Cost Simulation

In certain cases, such as real-time simulation, you need to simulate with an
execution time that is not only bounded, but practically fixed to a predictable
value. Fixing execution time can also improve performance when simulating
frequent events.

The real-time cost of a variable-step simulation is potentially unlimited.
The solver can take an indefinite amount of real time to solve a system

over a finite simulated time, because the number and size of the time steps
are adapted to the system. You can configure a fixed-step solver to take a
bounded amount of real time to complete a simulation, although the exact
amount of real time might still be difficult to predict before simulation. Even
a fixed-step solver can take multiple iterations to find a solution at each time

2-21

2 Model Simulation

step. Such iterations are variable and not generally limited in number; the
solver iterates as much as it needs to.

Fixing execution time implies fixed-cost simulation, which both fixes the time
step and limits the number of per-step iterations. Fixed-cost simulation
prevents execution overruns, when the execution time is longer than the
simulation sample time. A bounded execution time without a known fixed cost
might still cause some steps to overrun the sample time.

The actual amount of computational effort required by a solver is based on
a number of other factors as well, including model complexity and computer
processor. For more information, see “Real-Time Simulation” on page 2-39.

Global and Local Solvers

You can use different solvers on different parts of the system. For example,
you might want to use implicit solvers on stiff parts of a system and explicit
solvers everywhere else. Such local solvers make the simulation more efficient
and reduce computational cost.

Such multisolver simulations must coordinate the separate sequences of time
steps of each solver and each subsystem so that the various solvers can pass
simulation updates to one another on some or all of the shared time steps.

Making Optimal Solver Choices for Physical
Simulation

For the key simulation concepts to consider before making these choices, see
“Important Concepts and Choices in Physical Simulation” on page 2-19.
® “Simulating with Variable Time Step” on page 2-23

® “Simulating with Fixed Time Step — Local and Global Fixed-Step Solvers”
on page 2-23

® “Simulating with Fixed Cost” on page 2-24
® “Troubleshooting and Improving Solver Performance” on page 2-25

e “Multiple Local Solvers Example with a Mixed Stiff-Nonstiff System” on
page 2-26

2-22

Customizing Solvers for Physical Models

Simulating with Variable Time Step

For a typical Simscape model, MathWorks recommends the Simulink
variable-step solvers odel5s and ode23t. Of these two global solvers:

® The odelbs solver is more stable, but tends to damp out oscillations.

® The ode23t solver captures oscillations better but is less stable.

With Simscape models, these solvers solve the differential and algebraic parts
of the physical model simultaneously, making the simulation more accurate
and efficient.

Simulating with Fixed Time Step — Local and Global Fixed-Step
Solvers

In a Simscape model, MathWorks recommends that you implement fixed-step
solvers by continuing to use a global variable-step solver and switching the
physical networks within your model to local fixed-step solvers through each
network Solver Configuration block. The local solver choices are Backward
Euler and Trapezoidal Rule. Of these two local solvers:

¢ The Backward Euler tends to damp out oscillations, but is more stable,
especially if you increase the time step.

® The Trapezoidal Rule solver captures oscillations better but is less stable.

Regardless of which local solver you choose, the Backward Euler method is

always applied:

® Right at the start of simulation.

® Right after an instantaneous change, when the corresponding block
undergoes an internal discrete change. Such changes include clutches
locking and unlocking, valve actuators opening and closing, and the
switching of the Asynchronous Sample & Hold block.

Switching to Discrete States and Solvers.

¢ [f you switch a physical network to a local solver, the global solver treats
that network as having discrete states.

2-23

2 Model Simulation

2-24

e [If other physical networks in your model are not using local solvers, or if
the non-Simscape parts of your model have continuous states, then you
must use a continuous global solver.

e [f all physical networks in your model use local solvers, and any
non-Simscape parts of your model have only discrete states, then the
global solver effectively sees only discrete states. In that case, MathWorks
recommends a discrete, fixed-step global solver. If you are attempting
a fixed-cost simulation with discrete states, you must use a discrete,
fixed-step global solver.

For Maximum Accuracy with Fixed-Step Simulation. If solution
accuracy 1s your single overriding requirement, use the global Simulink
fixed-step solver odel4x, without local solvers. This implicit solver is the best
global fixed-step choice for physical systems. While it is more accurate than
the Simscape local solvers for most models, odel4x can be computationally
more intensive and slower when you use it by itself than it is when you use
it in combination with local solvers.

In this solver, you must limit the number of global implicit iterations per
time step. Control these iterations with the Number Newton’s iterations
parameter in the Solver pane of the Configuration Parameters dialog box.

Simulating with Fixed Cost

Many Simscape models need to iterate multiple times within one time step
to find a solution. If you want to fix the cost of simulation per time step, you
must limit the number of these iterations, regardless of whether you are
using a local solver, or a global solver like odel4x. For more information,
see “Unbounded, Bounded, and Fixed-Cost Simulation” on page 2-21 and
“Real-Time Simulation” on page 2-39.

To limit the iterations, open the Solver Configuration block of each physical
network. Select Use fixed-cost runtime consistency iterations and set
limits for the number of nonlinear and mode iterations per time step.

Tip Fixed-cost simulation with variable-step solvers is not possible in most
simulations. Attempt fixed-cost simulation with a fixed-step solver only and
avoid using fixed-cost iterations with variable-step solvers.

Customizing Solvers for Physical Models

Troubleshooting and Improving Solver Performance

Consider the basic trade-off of speed versus accuracy and stability. A larger
time step or tolerance results in faster simulation, but also less accurate
and less stable simulation. If a system undergoes sudden or rapid changes,
larger tolerance or step size can cause major errors. Consider tightening the
tolerance or step size if your simulation:

® Is not accurate enough or looks unphysical.
e Exhibits discontinuities in state values.

¢ Reaches the minimum step size allowed without converging, usually a sign
that one or more events or rapid changes occur within a time step.

Any one or all of these steps increase accuracy, but make the simulation
run more slowly.

For Local Solvers. Models with friction or hard stops are particularly
difficult for local solvers, and may not work or may require a very small time
step.

With the Trapezoidal Rule solver, oscillatory “ringing” can become more of a
problem as the time step is increased. For a larger time step in a local solver,
consider switching to Backward Euler.

For ODE Systems. In certain cases, your model reduces to an ODE system,
with no dependent algebraic variables. (See “How Simscape Models Represent
Physical Systems” on page 2-2.) If so, you can use any global Simulink solver,
with no special physical modeling considerations. An explicit solver is often
the best choice in such situations.

¢ Through careful analysis, you can sometimes determine if your model is
represented by an ODE system.

e If you create a Simscape model from a mathematical representation using

the Simscape language, you can determine directly if the resulting system
is ODE.

For Large Systems. Depending on the number of system states, you can
simulate more efficiently if you switch the value of the Linear Algebra
setting in the Solver Configuration block.

2-25

2 Model Simulation

2-26

For smaller systems, Full provides faster results. For larger systems, Sparse
is typically faster.

Multiple Local Solvers Example with a Mixed Stiff-Nonstiff
System

In this example, a Simscape model contains three physical networks.

®* Two networks (numbers 1 and 3) use local solvers, making these two
networks appear to the global solver as if they had discrete states.
Internally, these networks still have continuous states. These networks are
moderately and highly stiff, respectively.

One of these networks (number 1) uses the Backward Euler (BE) local
solver. The other (number 3) uses the Trapezoidal Rule (TR) local solver.

® The remaining network (number 2) uses the global Simulink solver. Its
states appear to the model as continuous. This network is not stiff and is
pure ODE. Use an explicit global solver.

® Because at least one network appears to the model as continuous, you
must use a continuous solver. However, if you remove network 2, and if
the model contains no continuous Simulink states, Simulink automatically
switches to a discrete global solver.

Customizing Solvers for Physical Models

iy

Simulink
blocks

States appear
as discrete

Model-wide Simulink solver

g B
Physical
Network 1

Local
solver
(BE)

N

States appear
as continuous

<
Physical

Network 2

(Nonstiff,
pure ODE)

Global
solver

States appear
as discrete

2-27

2 Model Simulation

Troubleshooting Simulation Errors

In this section...

“Troubleshooting Tips and Techniques” on page 2-28
“System Configuration Errors” on page 2-29
“Numerical Simulation Issues” on page 2-32

“Initial Conditions Solve Failure” on page 2-32

“Transient Simulation Issues” on page 2-33

Troubleshooting Tips and Techniques

Simscape simulations can stop before completion with one or more error
messages. This section discusses generic error types and error-fixing
strategies. You might find the previous section, “How Simscape Simulation
Works” on page 2-5, useful for identifying and tracing errors.

If a simulation failed:

e Review the model configuration. If your error message contains a list of
blocks, look at these blocks first. Also look for:

= Wrong connections — Verify that the model makes sense as a physical
system. For example, look for actuators connected against each other,
so that they try to move in opposite directions, or incorrect connections
to reference nodes that prevent movement. In electrical circuits, verify
polarity and connections to ground.

Wrong units — Simscape unit manager offers great flexibility in using
physical units. However, you must exercise care in specifying the
correct units, especially in the Simulink-PS Converter and PS-Simulink
Converter blocks. Start analyzing the circuit by opening all the converter
blocks and checking the correctness of specified units.

® Try to simplify the circuit. Unnecessary circuit complexity is the most
common cause of simulation errors.

® Break the system into subsystems and test every unit until you are positive
that the unit behaves as expected.

2-28

Troubleshooting Simulation Errors

¢ Build the system by gradually increasing its complexity.

MathWorks recommends that you build, simulate, and test your model
incrementally. Start with an idealized, simplified model of your system,
simulate it, verify that it works the way you expected. Then incrementally
make your model more realistic, factoring in effects such as friction loss,
motor shaft compliance, hard stops, and the other things that describe
real-world phenomena. Simulate and test your model at every incremental
step. Use subsystems to capture the model hierarchy, and simulate and test
your subsystems separately before testing the whole model configuration.
This approach helps you keep your models well organized and makes it easier
to troubleshoot them.

System Configuration Errors

® “Missing Solver Configuration Block” on page 2-29
e “Extra Fluid Block or Gas Properties Block” on page 2-29
e “Missing Reference Block” on page 2-30

¢ “Basic Errors in Physical System Representation” on page 2-30

Missing Solver Configuration Block

Each topologically distinct Simscape block diagram requires exactly one
Solver Configuration block to be connected to it. The Solver Configuration
block specifies the global environment information and provides parameters
for the solver that your model needs before you can begin simulation.

If you get an error message about a missing Solver Configuration block,
open the Simscape Utilities library and add the Solver Configuration block
anywhere on the circuit.

Extra Fluid Block or Gas Properties Block

If your model contains hydraulic elements, each topologically distinct
hydraulic circuit in a diagram requires a Custom Hydraulic Fluid block
(or Hydraulic Fluid block, available with SimHydraulics block libraries)

to be connected to it. These blocks define the fluid properties that act as
global parameters for all the blocks connected to the hydraulic circuit. If no

2-29

2 Model Simulation

2-30

hydraulic fluid block is attached to a loop, the hydraulic blocks in this loop
use the default fluid. However, more than one hydraulic fluid block in a loop
generates an error.

Similarly, more than one Gas Properties block in a pneumatic circuit
generates an error.

If you get an error message about too many domain-specific global parameter
blocks attached to the network, look for an extra Hydraulic Fluid block,
Custom Hydraulic Fluid block, or Gas Properties block and remove it.

Missing Reference Block

Simscape libraries contain domain-specific reference blocks, which represent
reference points for the conserving ports of the appropriate type. For
example, each topologically distinct electrical circuit must contain at least
one Electrical Reference block, which represents connection to ground.
Similarly, hydraulic conserving ports of all the blocks that are referenced

to atmosphere (for example, suction ports of hydraulic pumps, or return
ports of valves, cylinders, pipelines, if they are considered directly connected
to atmosphere) must be connected to a Hydraulic Reference block, which
represents connection to atmospheric pressure. Mechanical translational
ports that are rigidly clamped to the frame (ground) must be connected to a
Mechanical Translational Reference block, and so on.

If you get an error message about a missing reference block, or node, check
your system configuration and add the appropriate reference block based on
the rules described above. The missing reference node diagnostic messages
include information about the particular block and variable that needs a
reference node. This is especially helpful when multiple domains are involved
in the model. For more information and examples of best modeling practices,
see “Grounding Rules” on page 1-36.

Basic Errors in Physical System Representation

Physical systems are represented in the Simscape modeling environment
as Physical Networks according to the Kirchhoff’s generalized circuit laws.
Certain model configurations violate these laws and are therefore illegal.
There are two broad violations:

Troubleshooting Simulation Errors

® Sources of domain-specific Across variable connected in parallel (for
example, voltage sources, hydraulic pressure sources, or velocity sources)

e Sources of domain-specific Through variable connected in series (for
example, electric current sources, hydraulic flow rate sources, force or
torque sources)

These configurations are impossible in the real world and illegal theoretically.
If your model contains such a configuration, upon simulation the solver issues
an error followed by a list of blocks, as shown in the following example.

Example. The model shown in the following illustration contains two Ideal
Translational Velocity Sources connected in parallel. This produces a loop of
independent velocity sources, and the solver cannot construct a consistent
system of equations for the circuit.

‘ Idea| Translational
LT] Velocity Sowce |deal Translstional | =
~] MealTrarslstionsl g

Metion Sensor %
ko o o
= E
—

PS-Simulink Scope
Converter

0 Velocity Source

Sine Wave Simulink-F5
Converter

Constant Simulink-PS
Converter 1

i
Mechanical

Soler Translational
Caonfiguration " Reference

When you try to simulate the model, the solver issues an error message with
links to the Ideal Translational Velocity Source and Ideal Translational
Velocity Sourcel blocks. To fix the circuit, you can either replace the two
velocity sources by a single Ideal Translational Velocity Source block, or add a
Translational Damper block between them.

2-31

2 Model Simulation

2-32

Numerical Simulation Issues

¢ “Dependent Dynamic States” on page 2-32

e “Parameter Discontinuities” on page 2-32

Numerical simulation issues can be either a result of certain circuit
configurations or of parameter discontinuities.

Dependent Dynamic States

Certain circuit configurations can result in dependent dynamic states, or the
so-called higher-index differential algebraic equations (DAEs). Simscape
solver can handle dependencies among dynamic states that are linear in

the states and independent of time and inputs to the system. For example,
capacitors connected in parallel or inductors connected in series will not cause
any problems. Other circuit configurations with dependent dynamic states,
in certain cases, may slow down the simulation or lead to an error when the
solver fails to initialize.

Problems may occur when dynamic states have a nonlinear algebraic
relationship. An example is two inertias connected by a nonlinear gear
constraint, such as an elliptical gear. In case of simulation failure, the
Simscape solver may be able to identify the components involved, and provide
an error message with links to the blocks and to the equations within each
block.

Parameter Discontinuities

Nonlinear parameters, dependent on time or other variables, may also lead
to numerical simulation issues as a result of parameter discontinuity. These
issues usually manifest themselves at the transient initialization stage (see
“Transient Simulation Issues” on page 2-33).

Initial Conditions Solve Failure

The initial conditions solve, which solves for all system variables (with initial
conditions specified on some system variables), may fail. This has several
possible causes:

Troubleshooting Simulation Errors

e System configuration error. In this case, the Simulation Diagnostics
window usually contains additional, more specific, error messages, such
as a missing reference node, or a warning about the component equations,
followed by a list of components involved. See “System Configuration
Errors” on page 2-29 for more information.

® Dependent dynamic state. In this case, the Simulation Diagnostics
window also may contain additional, more specific, error messages,
such as a warning about the component equations, followed by a list of
components involved. See “Dependent Dynamic States” on page 2-32 for
more information.

¢ The constraint residual tolerance may be too tight to produce a consistent
solution to the algebraic constraints at the beginning of simulation. You
can try to increase the Constraint Residual Tolerance parameter value
(that 1s, relax the tolerance) in the Solver Configuration block.

If the Simulation Diagnostics window has other, more specific, error
messages, address them first and try rerunning the simulation. See also
“Troubleshooting Tips and Techniques” on page 2-28.

Transient Simulation Issues

¢ “Transient Initialization Not Converging” on page 2-33

e “Step-Size-Related Errors — Dependent States — High Stiffness” on page
2-34

Transient initialization happens at the beginning of simulation (after
computing the initial conditions) or after a subsequent event, such as a
discontinuity (for example, when a hard stop hits the stop). It is performed
by fixing all dynamic variables and solving for algebraic variables and
derivatives of dynamic variables. The goal of transient initialization is to
provide a consistent set of initial conditions for the next transient solve step.

Transient Initialization Not Converging

Error messages stating that transient initialization failed to converge, or that
a set of consistent initial conditions could not be generated, indicate transient
initialization issues. They can be a result of parameter discontinuity.

2-33

2 Model Simulation

Review your model to find the possible sources of discontinuity. See also
“Troubleshooting Tips and Techniques” on page 2-28.

You can also try to decrease the Constraint Residual Tolerance parameter
value (that is, tighten the tolerance) in the Solver Configuration block.

Step-Size-Related Errors — Dependent States — High Stiffness

A typical step-size-related error message may state that the system is unable
to reduce the step size without violating the minimum step size for a certain
number of consecutive times. This error message indicates numerical
difficulties in solving the Differential Algebraic Equations (DAEs) for the
model. This might be caused by dependent dynamic states (higher-index
DAES) or by the high stiffness of the system. You can try the following:

¢ Tighten the solver tolerance (decrease the Relative Tolerance parameter
value in the Configuration Parameters dialog box)

® Specify a value, other than auto, for the Absolute Tolerance parameter
in the Configuration Parameters dialog box. Experiment with this
parameter value.

¢ Tighten the residual tolerance (decrease the Constraint Residual
Tolerance parameter value in the Solver Configuration block)

¢ Increase the value of the Number of consecutive min step size
violations allowed parameter in the Configuration Parameters dialog box
(set it to a value greater than the number of consecutive step size violations
given in the error message)

¢ Review the model configuration and try to simplify the circuit, or add small
parasitic terms to your circuit to avoid dependent dynamic states. For more
information, see “Numerical Simulation Issues” on page 2-32.

2-34

Code Generation

Code Generation

In this section...

“About Code Generation from Simscape Models” on page 2-35
“Reasons for Generating Code” on page 2-35

“Using Code-Related Products and Features” on page 2-36

“How Simscape Code Generation Differs from Simulink” on page 2-36

About Code Generation from Simscape Models

You can use Simulink Coder™ software to generate stand-alone C or C++
code from your Physical Networks models and enhance simulation speed and
portability. Certain features of Simulink software also make use of generated
or external code. This section explains code-related tasks you can perform
with your Simscape models.

Code versions of Simscape models typically require fixed-step Simulink
solvers, which are discussed in the Simulink documentation. Some features of
Simscape software are restricted when you translate a model into code. See
“How Simscape Code Generation Differs from Simulink” on page 2-36, as
well as “Limitations” on page 2-77.

Note Code generated from Simscape models is intended for rapid prototyping
and hardware-in-the-loop applications. It is not intended for use as production
code in embedded controller applications.

Add-on products based on the Simscape platform also support code
generation, with some variations and exceptions described in their respective
documentation.

Reasons for Generating Code

Code generation has many purposes and methods. There are two essential
rationales:

2-35

2 Model Simulation

2-36

® Compiled code versions of Simulink and Simscape models run faster than
the original block diagram models. The time savings can be dramatic.

® An equally important consideration for Simscape models is the stand-alone
implementation of generated and compiled code. Once you convert part
or all of your model to code, you can deploy the stand-alone executable
program on virtually any platform, independently of MATLAB.

Converting a model or subsystem to code also hides the original model or

subsystem.

Using Code-Related Products and Features

With Simulink, Simulink Coder, and xPC Target™ software, using several
code-related technologies, you can link existing code to your models and
generate code versions of your models.

Code-Related Task

Component or Feature

Link existing code written in C
or other supported languages to
Simulink models

Simulink S-functions to generate
customized blocks

Speed up Simulink simulations

Accelerator mode
Rapid Accelerator mode

Generate stand-alone fixed-step
code from Simulink models

Simulink Coder software

Generate stand-alone
variable-step code from Simulink
models

Simulink Coder Rapid Simulation
Target (RSim)

Convert Simulink model to code
and compile and run it on a target
PC

Simulink Coder and xPC Target
software

How Simscape Code Generation Differs from

Simulink

In general, using the code generated from Simscape models is similar to using
code generated from regular Simulink models. However, there are certain

differences.

Code Generation

Simscape and Simulink Code Generated Separately

Simulink Coder software generates code from the Simscape blocks separately
from the Simulink blocks in your model. The generated Simscape code does
not pass through model. rtw or the Target Language Compiler. All the code
generated from a single model resides in the same directory, however.

Compiler and Processor Architecture Requirements

To generate and execute Simscape code, you must have a compiler and a
processor that support:

® 64-bit precision floating-point arithmetic

® 32-bit integer size

Although the 1lcc compiler, which is installed along with MATLAB, is
supported, for complex models the generated C-code complexity can exceed
the capacity of 1cc. MathWorks recommends that you consider using a
commercial compiler. For example, Microsoft® Visual Studio® Express is
available at no charge and compatible with Simscape software. For details
on supported compiler versions, see

http://www.mathworks.com/support/compilers/current_release

Precompiled Libraries Provided for Selected Compilers

Simscape software and its add-on products provide static runtime libraries
precompiled for compilers supported by Simulink Coder software. These are
the standard UNIX compilers for UNIX operating systems, 1cc and Microsoft
Visual Studio for 32-bit Windows®, and Microsoft Visual Studio for 64-bit
Windows.

For all other compilers, the static runtime libraries needed by code generated
from Simscape models are compiled once per model during the code generation
build process.

Simscape Code Reuse Not Supported

Reusable subsystems in Simulink reuse code that is generated once from the
subsystem. You cannot generate reusable code from subsystems containing
Simscape blocks.

2-37

http://www.mathworks.com/support/compilers/current_release

2 Model Simulation

2-38

Tunable Parameters Not Supported

A tunable parameter is a Simulink run-time parameter that you can change
while the simulation is running. Simscape blocks do not support tunable
parameters in either simulations or generated code.

Simscape Run-Time Parameter Inlining Override of Global
Exceptions

If you choose to enable parameter inlining for code generated from a Simscape
model, the software inlines all its run-time parameters. If you choose to make
some of the global Simscape block parameters exceptions to inlining, the
exceptions are ignored. You can change global tunable parameters only by
regenerating code from the model.

Real-Time Simulation

Real-Time Simulation

In this section...

“What Is Real-Time Simulation?” on page 2-39
“Requirements for Real-Time Simulation” on page 2-40
“Simulating Physical Models in Real Time” on page 2-41
“Preparing a Model for Real-Time Simulation” on page 2-42

“Troubleshooting Real-Time Simulation Problems” on page 2-45

What Is Real-Time Simulation?

Real-time simulation of an engineering system becomes possible when you
replace physical devices with virtual devices. This replacement reduces
costs and improves the quality of physical and control systems, including
their software, by enabling more complete testing of the entire system. It
also enables continuous testing, without interruption and under possibly
dangerous conditions. Real-time simulation allows you to test even when
you have no prototypes.

Real-time simulation becomes a necessity if you want to simulate a system
realistically responding to its environment. Such realistic simulation means
that the inputs and outputs in the virtual world of simulation must be read
or updated synchronously with the real world. When the simulation clock
reaches a certain time in real-time simulation, the same amount of time must
have passed in the real world.

Using Real-Time Simulation to Test Virtual Controllers and
Systems

In desktop simulation, you use models to develop and test control and signal
processing algorithms. Once the designs are complete and you have converted
these algorithms to embedded code, you must test that code as well as

the actual controller. If the model is capable of running in real time, you

can use the model created in the design phase to test the embedded code

and processor, instead of connecting it directly to a hardware prototype.
Such real-to-virtual substitution, simulating in real time, is referred to as
hardware-in-the-loop (HIL) testing.

2-39

2 Model Simulation

2-40

Example

Systems with a human in the simulation loop require real-time simulation.
For example, flight simulators that train pilots require real-time simulation
of the plane, its control system, the weather, and other environmental
conditions.

Requirements for Real-Time Simulation

Configuring a model and a numerical integrator to simulate in real time is
often more challenging than ordinary simulation. You simulate with a more
restrictive version of the universal computational tradeoff of accuracy versus
speed.

The simulation execution time per time step must be consistently short
enough to permit any other tasks that the simulation environment must
perform, such as reading sensor input or generating output actuator
signals. This requirement must be satisfied even if the simulation changes
its qualitative character: the system stiffness might change, and discrete
components can switch states. Such changes occasionally require more
computations to achieve an accurate result.

Bounding and Stabilizing Execution Time with Fixed-Step
Solvers and Fixed-Cost Simulation

When real-time simulation is the goal, the execution time per simulation time
step must be bounded. Variable-step solvers, which are often used in desktop
simulation, take smaller steps to accurately capture events that occur during
the simulation. But you cannot vary the step size in a real-time simulation.
Instead, you must

® Choose a fixed-step solver that can capture the system dynamics accurately
and minimize the amount of computation required per time step, without
changing the step size. If the system states are all discrete, the fixed-step
solver can be discrete as well.

If you choose a small enough step size, most fixed-step solvers produce
the same simulation results as a variable-step solver. However, different
fixed-step solvers (implicit/explicit, lower/higher order, and so on) require
different step sizes to produce accurate results. They also require different
amounts of computation per time step.

Real-Time Simulation

® Choose a fixed step size large enough to permit stable real-time simulation.
The step size must not be so large that the simulation results are
Inaccurate, but not so small that real-time simulation is impossible.

You often need trial and error to find the right combination of settings that
satisfy both criteria.

Real-time simulation requires not only bounding the execution time, but fixing
it to a stable value. This requires a fixed-cost simulation method. For more
information, see “Customizing Solvers for Physical Models” on page 2-19.

Simulating Physical Models in Real Time
Achieving real-time simulation with any Simscape model includes:

¢ Enabling simulation with fixed-step, fixed-cost solvers

® Converting the model with Simulink Coder to code for a particular
computer hardware target

® Testing real-time simulation on PC-compatible hardware with xPC Target,
if desired

For more information, see “Code Generation” on page 2-35.

Preparation for real-time simulation requires particular choices and
adjustment of Simulink variable-step solvers. Actual real-time simulation
requires Simulink fixed-step solvers. Certain Simscape features enable

and enhance real-time simulation of physical systems with Simulink
fixed-step solvers, both explicit and implicit. These features include fixed-cost
algorithms and local solvers, with the trapezoidal rule or backward Euler
method. See “Customizing Solvers for Physical Models” on page 2-19.

This figure plots the normalized computational cost of all fixed-step solvers
available for Simscape models, obtained for a nonlinear model example with
one physical network. For comparison, the step size was kept the same, with
similar settings for the total number of solver iterations.

2-41

http://www.mathworks.com/products/simulink-coder
http://www.mathworks.com/products/xpctarget/

2 Model Simulation

Normalized Cost of Fixed Step Solvers

B E plicit
—1 Imphicit
:Imphl:rl Simscape only

35

Lal
T

25

Mormalized Cost (relative to ODE1)

ODE1 ODEZ ODE3 ODE4 ODES ODESODE14x BE Trap

Preparing a Model for Real-Time Simulation
To move from desktop to real-time simulation on your real-time hardware

target, adjust the following simulation properties until the simulation can
execute in real time and deliver results close to the results from desktop
simulation:

e Solver choice

e Number of solver iterations

¢ Simulation time step size

® Model size and fidelity

Follow these high-level tasks to prepare a model for real-time simulation.
Each task is also a link to specific instructions for that part of the procedure.

1 “Simulate and Converge with Variable-Step Solver” on page 2-43

2 “Check Variable Time Steps for Optimal Step Size” on page 2-43

2-42

Real-Time Simulation

3 “Simulate with Fixed-Cost Solver and Compare to Variable-Step
Simulation” on page 2-44

4 “Adjust Step Size and Iterations to Approximate Variable-Step Simulation
Results” on page 2-44

5 “Attempt to Simulate in Real Time” on page 2-45

6 “Respond to Real-Time Simulation Failures” on page 2-45

Simulate and Converge with Variable-Step Solver
The first task is to obtain a converged set of results with a variable-step solver.

To ensure that the results obtained with the fixed-step solver are accurate, you
need a set of reference results. You can obtain these by simulating the system
with a variable-step solver. Ensure that the results converge by tightening
the error tolerances until the simulation results do not change significantly.

Check Variable Time Steps for Optimal Step Size

The second task is to examine the time step sizes during the desktop
simulation and determine if the model is likely to run with a large enough
step size to permit real-time simulation.

A variable-step solver varies the step size to keep the solution within error
tolerances and to react to zero crossing events. If the solver abruptly reduces
the step size to a small value (for example, 1e-15 s), the solver is trying

to accurately 1dentify a zero crossing event. A fixed-step solver might have
trouble capturing these events at a step size large enough to permit real-time
simulation.

Analysis of these particular variable time steps provides an estimate of a
step size that can be used to run the simulation. Modifying or eliminating
the effects are causing these events makes it easier to simulate the system
with a fixed-step solver at a reasonably large step size and produce results
comparable to the variable-step simulation. See “Troubleshooting Real-Time
Simulation Problems” on page 2-45.

2-43

2 Model Simulation

2-44

Simulate with Fixed-Cost Solver and Compare to Variable-Step
Simulation

The third task is to simulate the system with a fixed-step, fixed-cost solver
and compare these results to the reference results from the variable-step
simulation.

Limiting Per-Step Solver lterations. Simulating physical systems often
requires multiple iterations per time step to converge on a solution. To
perform a fixed-cost simulation, you must limit these iterations. In each
physical network Solver Configuration block, select the Use fixed-cost
runtime consistency iterations check box and enter the number of allowed
iterations.

Switching to Local Solvers. You can further minimize the computations
done per time step by choosing a local solver on each physical network in the
model. To switch to a local solver in a physical network, open the Solver
Configuration block of that network and select Use local solver. By using
this option, you can use an implicit fixed-step solver only on the stiff portions
of the model and an explicit fixed-step solver on the remainder of the model.
This minimizes the computations done per time step, making it more likely
that the model can run in real time.

Adjust Step Size and Iterations to Approximate Variable-Step
Simulation Results

The fourth task is to reduce the step size and adjust the number of nonlinear
iterations, in order to produce results that are sufficiently close to the
reference results from variable-step simulation. The step size must still be
large enough for a safety margin to prevent an execution overrun.

During each time step, the real-time simulation must calculate the result
for the next time step (simulation execution), and read inputs and write
outputs (I/O processing and other tasks). If these actions take less time than
the specified time step, the processor remains idle during the remainder of
the step. Choosing a computationally more intensive solver, increasing the
number of nonlinear iterations, or reducing the step size both increases the
simulation accuracy and reduces the amount of idle time, raising the risk
that the simulation cannot run in real time. Adjusting these settings in the
opposite way increases the amount of idle time but reduce accuracy.

Real-Time Simulation

Estimating the budget for the execution time helps ensure that you choose
a feasible combination of settings. If you know the amount of time spent
processing inputs and outputs and performing other actions, as well as the
percentage of idle time that you want, the amount of time available for
simulation execution can be calculated as follows:

Simulation Execution Time Budget =
Step Size — [I/O Processing Time + (Desired Percentage of Idle Time) (Step Size)]

Estimating Real-Time Execution Time. You can use the desktop simulation
speed to estimate the execution time on a real-time hardware target. Many
factors affect the real-time target execution time, so that comparing processor
speeds might not be sufficient.

A better method is to measure the execution time of desktop simulation and
then to determine the average execution time per time step on the real-time
target for a particular model. Knowing how these execution times compare for
one model means that you can estimate execution time on the real-time target
from the desktop simulation execution time when you test other models.

Attempt to Simulate in Real Time

The fifth task is to use the selected solver, the number of nonlinear iterations,
and the step size to simulate on the real-time target and to verify if the
simulation can run in real time.

If the simulation does not run in real time on the target hardware, the model
might not be real-time capable.

Respond to Real-Time Simulation Failures

If the simulation does not run in real time on the selected real-time target,
perform a sixth, contingent task, described in “Troubleshooting Real-Time
Simulation Problems” on page 2-45.

Troubleshooting Real-Time Simulation Problems

If the simulation does not run in real time on the real-time platform, or if the
simulation performance is unacceptable, you should determine the causes
and find an appropriate solution. The combination of effects captured in the

2-45

2 Model Simulation

2-46

model and the speed of the real-time platform might make it impossible to
find solver settings that permit it to run in real time. Consider the following
options to make it real-time capable.

Once you modify your model, return to the third, fourth, and fifth tasks of
“Preparing a Model for Real-Time Simulation” on page 2-42 to identify and
implement the appropriate settings to enable real-time simulation.

Speeding Up Real-Time Execution

You can speed up the real-time simulation by using a faster real-time target
computer.

Alternatively, you can achieve the same goal by determining new model
settings that permit a larger step size or reduce the execution time (for
example, by reducing the number of nonlinear iterations).

Simulating Parts of the System in Parallel

If possible, configure the model to evaluate multiple physical networks in
parallel. You can do this if the networks are not dependent upon one another.
You need experience and experimentation with your model, the generated
code, and the real-time target to make effective use of this option.

Eliminating Effects That Require Intensive Computation

Certain effects in your model can prevent real-time simulation. Such effects
include instantaneous events and rapid changes in parts of the system with
very small time constants. Identify and modify or remove these elements
before searching again for a combination of solver settings and step size that
permits real-time simulation.

Identifying Elements Causing Rapid or Instantaneous Changes. Watch
for certain system elements becoming excited to high frequencies. Examine
the system eigenmodes to isolate which system states have the highest
frequency. Mapping those states to individual components often points to the
source of the problem. Because you can only do this at a particular operating
point, choose an operating point corresponding to simulation times in the
variable-step simulation that had small step sizes. At such simulation times,
the variable-step solver is struggling to simulate a rapid change.

Real-Time Simulation

With scripts written in MATLAB, you can interrogate the model, identify
these components quickly, and narrow the search for the effects that you need
to modify. You can automate and extend these searches to other models with
tools like the Simulink Model Advisor. The troublesome components that
you need to locate include:

¢ Elements that create events and change the solution nearly
Iinstantaneously. A fixed-step solver might not be able to step over such
rapid changes and find the right solution on the other side of the event. If
it fails to find the solution, the solver may become unstable. Examples of
elements that create these kinds of events include:

= Hard stops or backlash
= Stick-slip friction
= Switches or clutches

¢ Elements with very small time constants. The dynamics of these elements
require a small step size so that a fixed-step solver can accurately simulate
them, perhaps too small for real-time simulation. Examples of systems
with a small time constant include:

= Small masses attached to stiff springs with minimal damping

= Electrical circuits with small capacitance and inductance and low
resistance

= Hydraulic circuits with small compressible volumes
Modifying or Removing Elements Causing Rapid or Instantaneous
Changes. Once you have identified these elements, change or eliminate
them by:
® Replacing nonlinear components with linearized versions
® Replacing complex equations with lookup tables for their solution

® Replacing complicated components with simplified models by using system
identification theory on their input and output data

® Smoothing discontinuous functions (step changes) by using filters, delays,
and other techniques.

2-47

2 Model Simulation

Finding an Operating Point

2-48

In this section...

“What Is an Operating Point?” on page 2-48
“Some Operating Point Search Methods” on page 2-49
“Finding Operating Points in Physical Models” on page 2-50

What Is an Operating Point?

An operating point of a system is a dynamic configuration that satisfies design
and use requirements called operating specifications. You can express such
operating specifications as requirements on the system state x and inputs wu.
It 1s not always possible to find a dynamic state that satisfies all operating
conditions. Also, a system might have multiple operating points satisfying
the same requirements.

Operating points are essential for designing and implementing system
controllers. You can optimize a system at an operating point for performance,
stability, safety, and reliability.

The most important and common type of operating point is a steady state,
where some or all of the system dynamic variables are constant.

Using Operating Points for Linearization

An important motive for finding operating points is linearization, which
determines the system response to small disturbances at an operating point.
Linearization results influence the design of feedback controllers to govern
dynamic behavior near the operating point. A full linearization analysis
requires one or more system outputs, y, in addition to inputs.

See “Linearizing at an Operating Point” on page 2-55.

Example

A pilot flying an aircraft wants to find, for a given environment, a state of the
aircraft engine and control surfaces that produces level, constant-velocity, and
constant-altitude flight relative to the ground. The requirements of "level,"

Finding an Operating Point

nn

"constant velocity," "constant altitude," and "relative to the ground" constitute
operating specifications. This operating point is a steady state of the aircraft
velocity, altitude, and orientation in space.

Some Operating Point Search Methods

You can provide predefined state and input vectors, x, and u,, to specify
an operating point. If you do not know an operating point in advance, you
have two methods of identifying an operating point that satisfies operating
specifications.

* “Time-Based Search” on page 2-49: Observing the actual or simulated
behavior of the system in time is more general, but less precise, and usually
requires a trial-and-error process to find a precise operating point.

® “State-Based Search” on page 2-49: If you know the system dynamics, you
can solve for steady states, at least in principle.

Time-Based Search

You can sometimes find operating points and steady states by trial and error
while operating or simulating over some length of time and varying the
system parameters, inputs, and initial conditions. In such a time-based
approach, you isolate and study instants or intervals of time when a system
satisfies the operating specifications. The system state and inputs under
those conditions constitute the operating point, which you can also specify
by an operating or simulation time.

State-Based Search

The alternative to trial-and-error searching for steady states is trimming.
In this state-based approach, you bypass time-based simulation and find
solutions for inputs, outputs, states, and state derivatives satisfying an
operating specification. Trimming specifies inputs and part of a state and
solves the system dynamics for the rest of the state. The resulting full state
and input vectors, x, and u,, constitute the operating point.

In general, there is no guarantee that such solutions, x,, exist for given
operating specifications and inputs, u,,.

2-49

2 Model Simulation

Checking Discrete System States

An operating point includes the state of discrete system variables that
change in a discontinuous way. In general, you cannot find these states by
small, continuous changes of system variables. Such states usually require
systematic exploration of the discrete variables over the full range of their
possible values.

Finding Operating Points in Physical Models

You have a number of ways to find an operating point in a Simscape model.
You can impose operating specifications and isolate operating points using
Simscape and Simulink features.

Tip To find a steady state, the Simscape steady-state solver is the most direct
method. For a comprehensive suite of operating point and linearization tools,
MathWorks recommends Simulink Control Design™ software.

To analyze operating points, you work with the full state vector of your model,
which contains:

¢ Simulink components, which can be continuous or discrete.

® Simscape components, which are continuous.

Whichever method that you choose to find an operating point, if you want to
use it for linearization, you must save the operating point information in the
form of an operating point object, a simulation time £, or a state vector x,,
and input vector u,,.

¢ “Simulating in Time to Search for an Operating Point” on page 2-51

¢ “Using the Simscape Steady-State Solver” on page 2-51

¢ “Using Simulink® Control Design™ Techniques to Find Operating Points”
on page 2-52

¢ “Using Sources to Find Operating Points Not Recommended” on page 2-54

¢ “Simulink trim Function Not Supported with Simscape Models” on page
2-54

2-50

Finding an Operating Point

Simulating in Time to Search for an Operating Point

One way to identify operating points is to simulate your model and inspect its
state x and output y as a time series.

1 In your Simscape model, set up sensor outputs for whatever block outputs
you want to observe.

2 Connect Scope blocks, To Workspace blocks, or both, to your Simscape
block outputs to observe and record simulation behavior.

3 In the Data Import/Export pane of your model Configuration Parameters
settings, select the Time, States, and Output check boxes to record this
simulation information in your workspace.

Using the Simscape Steady-State Solver

Most commonly, the operating point that you want is a steady state. The
Simscape steady-state solver allows you to isolate steady states more exactly
than you can with ordinary simulation. It is the only practical method to
isolate steady states of a strongly nonlinear character. You can search for
multiple steady states with the steady-state solver by varying the model
inputs, parameters, and initial conditions.

Before simulation starts, the steady-state solver determines the model steady
state x(t=0) = x,. In general, the system does not remain in this initial
steady state x, during simulation, because the system inputs u change
independently, and the system has to respond by changing its state x().

To implement the steady-state solver:

1 In each, some, or all of the physical networks in your Simscape model,
open the Solver Configuration block.

2 In each block dialog box, select the Start simulation from steady state
check box.

3 In the model Configuration Parameters settings, on the Data

Import/Export pane, select the States check box to record the time series
of x values in your workspace.

2-51

2 Model Simulation

2-52

If you also have input signals u in the model, you can capture those inputs
by connecting To Workspace blocks to the input Simulink signal lines.

4 Close these dialog boxes and start simulation.

The first vector of values x(¢=0) that you capture during simulation reflects
the steady state x, that the Simscape solver identified.

Tip Finding an initial steady state is part of the nondefault Simscape
simulation sequence. See “Initial Conditions Computation” on page 2-8.

You can simplify the initial steady-state computation by setting the
simulation time to 0. The simulation then solves for one time step only (time
zero) and returns a single state vector x(¢=0).

Using Simulink Control Design Techniques to Find Operating
Points

Note The techniques described in this section require the Simulink Control
Design product.

You must use the features of this product on the Simulink lines in your model,
not directly on Simscape physical network lines or blocks. Simulink Control
Design offers both command line and graphical interfaces for finding and
analyzing operating points.

Simulink Control Design methods are state-based, giving you full access to
state names and values, and allow you to impose operating specifications or
use simulation snapshots. They work well for simple to moderately complex
Simscape models. MathWorks does not recommend these methods for highly
complex Simscape models.

To find operating points, it is simplest to use the operspec and findop
functions, customizing where necessary. Create an operating specification
object with operspec, then compute an operating point object with findop.
The findop function attempts to find an operating point that satisfies

Finding an Operating Point

the operating specifications and reports on its success or failure. If the
search is successful, find_op returns state values satisfying the operating
specifications.

You have several choices for operating specifications for the components of
the state vector.

Assumed Operating Specification

Operating

Condition

Default Request that all state component derivatives be zero.

This is a steady-state for the whole model, not just a
Simscape network within the model.

Nondefault Request any value you want independently for each
state component.

Nondefault Request that a particular state component derivative
be zero.

This is a steady-state condition for that state
component.

Tip Making full use of Simulink Control Design software to locate operating
points requires that the model be able to run without trying to start in a
steady state. In the Solver Configuration blocks of your model, ensure that
the Start simulation from steady state check boxes are cleared.

Additional Simulink Control Design Methods. You can also use the
graphical user interface, through the model menu bar: Analysis > Control
Design > Linear Analysis. This interface gives you access to state, input,
and output names, structure, and initial values.

For more details on the use of operating point specification objects, related

functions, and the graphical interface, see the Simulink Control Design
documentation.

2-53

http://www.mathworks.com/help/toolbox/slcontrol/
http://www.mathworks.com/help/toolbox/slcontrol/

2 Model Simulation

2-54

Using Sources to Find Operating Points Not Recommended
You can impose an operating specification on part of a Simscape model by
inserting source blocks from the Simscape Foundation Library. These impose
specified values of system variables in parts of the model. You can simulate
and save the state vector.

However, you cannot obtain an operating point for the original system
(without the source blocks) by saving the state values from the model and
then removing the source blocks. In general, the number, order, and identity
of state components change after adding and removing Simscape blocks in

a model.

Simulink trim Function Not Supported with Simscape Models

The Simulink trim function is not supported for models containing Simscape
components.

Linearizing at an Operating Point

Linearizing at an Operating Point

In this section...

“What Is Linearization?” on page 2-55
“Some Linearization Methods” on page 2-58

“Linearizing a Physical Model” on page 2-59

What Is Linearization?

Determining the response of a system to small perturbations at an operating
point is a critical step in system and controller design. Once you find an
operating point, you can linearize the model about that operating point to
explore the response and stability of the system. To find an operating point in
a Simscape model, see “Finding an Operating Point” on page 2-48.

¢ “What Is a Linearized Model?” on page 2-55
e “Example” on page 2-56
¢ “Choosing a Good Operating Point for Linearization” on page 2-56

® “Linearizable and Nonlinearizable Operating Points in a Hydraulic
Two-Way Valve System” on page 2-57

What Is a Linearized Model?

Near an operating point, you can express the system state x, inputs u, and
outputs y relative to that operating point in terms of x — x,, u — u,, and y —
¥,- For convenience, shift the vectors by subtracting the operating point: x
— x, — x, and so on.

If the system dynamics do not explicitly depend on time and the operating
point is a steady state, the system response to state and input perturbations
near the steady state is approximately governed by a linear time-invariant
(LTI) state space model:

dx/dt=Ax+ Bu

y=Cx+ Dwu.

2-55

2 Model Simulation

2-56

The matrices A, B, C, D have components and structures that are independent
of the simulation time. A system is stable to changes in state at an operating
point if the eigenvalues of A are negative.

If the operating point is not a steady state or the system dynamics depends
explicitly on time, the linearized dynamics near the operating point is more
complicated. The matrices A, B, C, D are not constant and depend on the
simulation time ¢, , as well as the operating point x, and u, [3].

Tip While you can linearize a closed system with no inputs or outputs and
obtain a nonzero A matrix, obtaining a nontrivial linearized input-output
model requires at least one input component in z and one output component
n y.

Example

A pilot is flying, or simulating, an aircraft in level, constant-velocity, and
constant-altitude flight relative to the ground, in a known environment. A
crucial question for the aircraft pilot and designers is: will the aircraft return
to the steady state if perturbed from it by a disturbance, such as a wind
gust — in other words, is this steady state stable? If the operating point is
unstable, the aircraft trajectory can diverge from the steady state, requiring
human or automatic intervention to maintain steady flight.

Choosing a Good Operating Point for Linearization

Although steady-state and other operating points (state x, and inputs)
might exist for your model, that is no guarantee that such operating points are
suitable for linearization. The critical question is: how good is the linearized
approximation compared to the exact system dynamics?

® When perturbed slightly, a problematic operating point might exhibit
strong asymmetries, with strongly nonlinear behavior when perturbed in
certain ways and smoother behavior in other ways.

¢ Small perturbations might change discrete states in a large, discontinuous
way that violates the linear approximation.

Linearizing at an Operating Point

Operating points with a strongly nonlinear or discontinuous character are not
suitable for linearization. You should analyze such models in full simulation,

away from any discontinuities, and perturb the system by varying its inputs,

parameters, and initial conditions.

Tip Check for such an unsuitable operating point by linearizing at several
nearby operating points. If the results differ greatly, the operating point is
strongly nonlinear or discontinuous.

Linearizable and Nonlinearizable Operating Points in a
Hydraulic Two-Way Valve System

Note One step in this example (creating Bode plots) requires Control System
Toolbox™ software.

The ssc_hydraulic_system_2_way_valve model simulates a hydraulic system
made up of a valve and piston, with a controller based on the linear position
of the piston. To examine the valve characteristics, open the Cylinder DA
Custom block. Run the model with the Position scope open.

The piston has two natural operating points, at zero position and at the
stop. Without feedback control, both operating points are steady states.
Create an open-loop system by deleting the feedback signal line from Ideal
Translational Motion Sensor to PS Subtract. Then run the model again to
see these steady states.

¢ The operating point at piston position of 0 m is appropriate for linearization,
because of this state’s quasi-linear character. In this position, the piston
can move freely forward and backward.

¢ The operating point at the stop (stroke at 0.3 m) is not appropriate for
linearization. This state’s response is quasi-linear if perturbed by moving
the piston back slightly, but highly nonlinear if you attempt to push the
piston beyond the stop.

Open the modified version of the model,
ssc_hydraulic_system_2_way_valve_trimlin. This version is set up for

2-57

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/

2 Model Simulation

stability analysis with the hydraulic plant confined to its own subsystem and
model-level input and output ports.

To see the simulation results, run the model first. Check the suitability of
these operating points for linearization by linearizing to obtain the A, B, C,
D matrices.

1 Linearize at zero piston position. To do this automatically, double-click the
Linearize block. The result is plotted as a Bode diagram.

Then linearize at a few other positions close to zero (slightly more than 0 m).

2 Linearize at the piston stop, then a few other positions just short of the
stop (a little less than 0.3 m).

Once you have a series of A matrices near zero and near the stop, you can
define scalar-invariant metrics from A for comparison purposes. One such
metric is the trace of A, the sum of its eigenvalues.

¢ The suitability of the operating point at zero means that the trace of A
varies little over operating points near zero.

¢ The unsuitability of the operating point at the stop means that the trace of
A varies significantly over operating points near the stop.

These characteristics indicate that this operating point is highly
nonlinear and changes too rapidly for small perturbations to make a good
linearization point.

Some Linearization Methods

Once you know an operating point, you have three practical methods for
investigating the system response to small disturbances.

Full Simulation- or Operation-Based Perturbations

You can experiment with the system or a system simulation by making
repeated, different, and slight changes to the system parameters, inputs,
and initial conditions, while operating at a steady state. This method
requires costly trial and error and generates uncontrolled and imprecise
approximations.

2-58

Linearizing at an Operating Point

Analytic Approximations to Known State Dynamics

If you know the system state dynamics and an operating point x, and «, in
analytic form, you can apply standard approximation techniques to derive an
analytic form for the A, B, C, D matrices.

Numerical Approximations to Known State Dynamics

If you have a controlled numerical approximation to your system state
dynamics and operating point, you can apply standard computational
techniques to generate numerical approximations to the A, B, C, D matrices.

Simulink and Simscape features provide methods for generating numerical
linearized models.

Linearizing a Physical Model

Use the following methods to create numerical linearized state-space models
from a model containing Simscape components.

Tip MathWorks recommends the Simulink Control Design product for
linearization analysis.

* “Independent Versus Dependent States” on page 2-59
¢ “Linearizing with Simulink® Control Design™ Software” on page 2-60

e “Linearizing with the Simulink 1inmod and dlinmod Functions” on page
2-61

® “Linearizing with Simulink Linearization Blocks” on page 2-63

Independent Versus Dependent States

An important difference from normal Simulink models is that the states in a
physical network are not independent in general, because some states have
dependencies on other states through constraints.

¢ The independent states are a subset of system variables and consist of
Simscape dynamic variables and Simulink states.

2-59

2 Model Simulation

2-60

® The dependent states consist of Simscape algebraic variables and
dependent (constrained) dynamic variables.

For more information on Simscape dynamic and algebraic variables, see “How
Simscape Simulation Works” on page 2-5.

The complete, unreduced LTI A, B, C, D matrices have the following structure.

* The A matrix, of size n_states by n_states, is all zeros except for
a submatrix of size n_ind by n_ind, where n_ind is the number of
independent states.

* The B matrix, of size n_states by n_inputs, is all zeros except for a
submatrix of size n_ind by n_inputs.

¢ The C matrix, of size n_outputs by n_states, is all zeros except for a
submatrix of size n_outputs by n_ind.

® The D matrix, of size n_outputs by n_inputs, can be nonzeros everywhere.
Obtaining the Independent Subset of States. A minimal linearized
solution uses only an independent subset of system states. From the matrices

A, B, C, D, you can obtain a minimal input-output linearized model with:

® The minreal and sminreal functions from Control System Toolbox software

® Automatically with the Simulink Control Design approach

Linearizing with Simulink Control Design Software

Note The techniques described in this section require the Simulink Control
Design product.

You must use the features of this product on the Simulink lines in your model,
not directly on Simscape physical network lines or blocks.

This approach requires that you start with an operating point object saved
from trimming the model to an operating specification, as explained in “Using
Simulink® Control Design™ Techniques to Find Operating Points” on page
2-52.

http://www.mathworks.com/help/toolbox/control/

Linearizing at an Operating Point

To linearize a model with an operating point object, use the linearize
function, customizing where necessary. The resulting state-space object
contains the matrices A, B, C, D.

Additional Simulink Control Design Methods. You can also use the
graphical user interface, through the model menu bar: Analysis > Control
Design > Linear Analysis. For more details on linearization, operating
points and state-space objects, related functions, and the graphical interface,
see the Simulink Control Design documentation.

Linearizing with the Simulink linmod and dlinmod Functions

You have several ways that you can use the Simulink functions 1inmod and
dlinmod, and the linearization results can differ depending on the method
chosen. To use these functions, you do not have to open the model, just have
the model file on your MATLAB path.

For more information about Simulink linearization, see “Linearizing Models”
in the Simulink documentation.

Tip If your model has continuous states, use 1inmod. (Continuous states
are the Simscape default.) If your model has mixed continuous and discrete
states, or purely discrete states, use dlinmod.

Linearizing a model with the local solver enabled (in the Solver Configuration
block) is not supported.

Linearizing with Default State and Input. You can call 1inmod without
specifying state or input. Enter 1inmod('modelname') at the command line.

With this form of 1inmod, Simulink linearization solves for consistent initial
conditions in the same way it does on the first step of any simulation. Any
initial conditions, such as initial offset from equilibrium for a spring, are set
as if the simulation were starting from the initial time.

linmod allows you to change the time of externally specified signals (but not

the internal system dynamics) from the default. For this and more details, see
the function reference page.

2-61

http://www.mathworks.com/help/toolbox/slcontrol/

2 Model Simulation

2-62

Linearizing with the Steady-State Solver at an Initial Steady State.
You can linearize at an operating point found by the Simscape steady-state
solver:

1 Open one or more Solver Configuration blocks in your model.

2 Select the Start simulation from steady state check box for the physical
networks that you want to linearize.

3 Close the Solver Configuration dialog boxes and save the modified model.

4 Enter 1inmod('modelname') at the command line.

linmod linearizes at the first step of simulation. In this case, the initial state
1s also an operating point, a steady state.

For more about setting up the steady-state solver, see the Solver Configuration
block reference page. For more details on its use, see “Using the Simscape
Steady-State Solver” on page 2-51.

Linearizing with Specified State and Input — Ensuring Consistency
of States. You can call 1inmod and specify state and input. Enter
linmod('modelname',x0,u0) at the command line. The extra arguments
specify, respectively, the steady state x, and inputs u, for linearizing

the simulation. When you specify a state to 1inmod, ensure that it is
self-consistent, within solver tolerance.

With this form of 1inmod, Simulink linearization does not solve for initial
conditions. Because not all states in the model have to be independent, it is
possible, though erroneous, to provide 1inmod with an inconsistent state to
linearize about.

If you specify a state that is not self-consistent (within solver tolerance), the
Simscape solver issues a warning at the command line when you attempt
linearization. The Simscape solver then attempts to make the specified x0
consistent by changing some of its components, possibly by large amounts.

Linearizing at an Operating Point

Tip You most easily ensure a self-consistent state by taking the state from
some simulated time. For example, by selecting the States check box on the
Data Import/Export pane of the model Configuration Parameters dialog
box, you can capture a time series of state values in a simulation run.

Linearizing with Simulink Linearization Blocks

You can generate linearized state-space models from your Simscape model by
adding a Timed-Based Linearization or Trigger-Based Linearization block to
the model and simulating. These blocks combine time-based simulation, up to
specified times or internal trigger points, with state-based linearization at
those times or trigger points.

For complete details about these blocks, see their respective block reference
pages.

Note If your model contains PS Constant Delay or PS Variable Delay
blocks, or custom blocks utilizing the delay operator in the Simscape
language, MathWorks recommends that you linearize the model by using
the Timed-Based Linearization or Trigger-Based Linearization block and
simulating the model for a time period longer than the specified delay time.

2-63

2 Model Simulation

Linearize an Electronic Circuit

2-64

In this section...

“About the Nonlinear Bipolar Transistor Circuit” on page 2-64

“Finding Operating Points in a Transistor Circuit with the Simscape
Solver” on page 2-70

“Linearizing a Transistor Circuit with Simulink and Related Software”
on page 2-71

About the Nonlinear Bipolar Transistor Circuit

The ssc_bipolar_nonlinear model contains a nonlinear bipolar junction
transistor circuit, equivalent to an Ebers-Moll circuit [2]. A modified version
of the model, ssc_bipolar_nonlinear_trimlin, is ready for linearization when
you first open it and forms the basis for the following operating point and
linearization examples.

e “Simulating the Basic Model Starting at Steady and Nonsteady States”
on page 2-64

¢ “Changing the Steady State and Amplification in the Basic Model” on page
2-66

® “Opening and Simulating a Modified Model Prepared for Linearization
Analysis” on page 2-67

® “Approaching Steady State Through Long-Time Transient Simulation”
on page 2-69

Simulating the Basic Model Starting at Steady and Nonsteady
States

The transistor acts between base-emitter voltage (ports B and E) and collector
current (port C). The circuit is driven by an oscillating AC voltage source of 10
mV and 1 kHz, with a constant bias DC voltage of 10 V. The Nonlinear NPN
Transistor is the essential component of the circuit and represents a bipolar
transistor that amplifies the driving AC voltage. The Scope block displays
the voltage coming off the collector.

Linearize an Electronic Circuit

Simulate ssc_bipolar_nonlinear with the Scope open to see the basic circuit
behavior. The output transistor junction capacitances are set to be initially
consistent with the bias subcircuit. The output is a steady sinusoid with

zero average, its amplitude amplified by a factor 3 by the transistor and bias
subcircuit.

J J yd Scope
i} . yd
47K % 1.8K % rd
" 1 g i
LI E . ,’J, C:] 10v
1uF Menlinsar NPN /\m‘r W
Transistor =3
11K 200 % PS 100K
Scoy
I -
| ™ S, 0 0. 0.004 0.008 0.003 om
=, T~

Solver
Configuration

Nonlinear Bipolar Transistor

This model shows an impl ation of 8 lingar bipolar i model
based on the Ebers-Moll equivalent circuit. R1 and R2 set the nominsal
operating point, and the small signal gain is approximsately set by the ratic

R3/R4. The 1uF decoupling capacitors have been chosen to present negligible
impedance at 1KHz.

To see the circuit relax from a nonsteady initial state, open the Solver
Configuration block and clear the Start simulation from steady state
check box. With the Scope open, simulate again. In this case, the output
voltage starts at zero because the transistor junction capacitances start with
zero charge. Then change the model back to starting at a steady state.

2-65

2 Model Simulation

_ |3 x|
GELLPL ABB B AT -

] 0.002 0.004 L1 LI L1 LIk 0.0

Time offzet. 0

Changing the Steady State and Amplification in the Basic
Model

The steady-state collector voltage is controlled mainly by the R2 and R4
resistance values, while the amplification of the driving AC voltage is
controlled mainly by the R1 and R3 resistance values. Experiment with
changing these resistances to change the steady state and near-steady state
behavior of the circuit. For example, change R1 from 47 to 15 kOhms. The
collector voltage is now no longer amplified relative to the 10 mV AC source,
but attenuated.

2-66

Linearize an Electronic Circuit

0.01

N .
0.005 k- - - : :

001 L = e s —
1]

0.004 (. 00 (. 00E

Time offzet. 0

5BH 0L L ABE DA T

.01

If you simulate without starting from a steady state, changing these
resistance values also modifies the transient behavior.

Opening and Simulating a Modified Model Prepared for

Linearization Analysis

To obtain a nontrivial linearized input-output model from the Simulink
model, you must specify model-level inputs and outputs. The modified
ssc_bipolar_nonlinear_trimlin meets this requirement in two ways, depending

on how you linearize.

¢ Simulink Control Design software requires that you specify input and
output signal lines with linearization points. ssc_bipolar_nonlinear_trimlin
has such linearization points specified. The specified lines must be
Simulink signal lines, not Simscape physical connection lines. For more
information on using Simulink Control Design software for trimming and
linearization, see documentation for this product.

2-67

http://www.mathworks.com/products/simcontrol/

2 Model Simulation

2-68

e Simulink requires top- or model-level input and output ports for
linearization with 1inmod. ssc_bipolar_nonlinear_trimlin has such ports,
marked u and y.

1 Open ssc_bipolar_nonlinear_trimlin. Open the AC voltage source
subsystem. The AC Voltage source is now combined with an input port.

Signal lines marked

with linearization points \

R2
R1 1.8K
47K

Sirnulink-PS
Converter

,_j_.[:. 1

Nenlinear NP

Transistor

RL

o 100K

R2
R4
1Dn'|‘\u". 1kHz 11K % %

::] 10V

[}

Solver

Configuration

2 Right-click the two signal lines indicated, each of which is marked with a
linearization point symbol. A context menu is displayed. Select Linear
Analysis Points. A submenu is displayed, listing the different ways you
can mark signal lines for control design analysis.

¢ One signal line is inside the source subsystem and runs from the
model-level input port u. In the submenu, Input Point is selected,
indicating that this signal line is designated as an input.

® The other signal line leads to the Scope and runs to a model-level output
port y. In the submenu, Output Point is selected, indicating that this
signal line is designated as an output.

3 Open and run this modified version of the model. The simulated behavior

of this version is the same as the original model.

Linearize an Electronic Circuit

Approaching Steady State Through Long-Time Transient
Simulation

You can get a more comprehensive understanding of the circuit behavior and
how it approaches the steady state by changing the simulation and Scope
parameters in ssc_bipolar_nonlinear_trimlin.

1 Open Solver Configuration and clear the Start simulation from steady
state check box. Click OK.

2 Open the Scope. From the Scope menu bar, open Parameters.

3 On the General pane, change Time range to 1.0. On the Data History
pane, clear the Limit data points to last check box. Click OK.

4 Change the simulation time to 1.

5 Start the simulation. The circuit starts from its initial nonsteady state,

and the transistor collector voltage approaches and eventually settles into
steady sinusoidal oscillation.

— Ol x|
SB(oL L HAEEB DA EF -

2-69

2 Model Simulation

2-70

Finding Operating Points in a Transistor Circuit with
the Simscape Solver

Note This example uses the Simscape steady-state solver. Save the results
of this example (in particular, the initial steady state vector x,) for later use
in “Linearizing a Transistor Circuit with Simulink and Related Software”
on page 2-71. You should work through the later section after you follow
this example.

For general information about the Simscape steady-state solver, see “Finding
Operating Points in Physical Models” on page 2-50.

Simulating and Saving the Steady State as an Operating Point
Simulate the modified ssc_bipolar_nonlinear_trimlin, with the Simscape

steady-state solver enabled, as it is when you first open the model. This
steady-state solution is an operating point suitable for linearization. With the
simulation starting from this steady state, you can characterize this operating
point by one of the following:
¢ The initial time t = 0
¢ The initial state vector x,. To capture state values during simulation:

1 Open the model Configuration Parameters dialog box.

2 Select the Data Import/Export pane.

3 Select the States check box under Save to workspace.

At the first time step, the state vector values represent the initial state.

4 Click OK.

After you simulate with an initial steady state, capture the initial state vector
by entering:

x0 = xout(1,:);

Linearize an Electronic Circuit

Linearizing a Transistor Circuit with Simulink and
Related Software

Note This example uses 1linmod and time-based linearization. Before
attempting it, work through the preceding example, “Finding Operating
Points in a Transistor Circuit with the Simscape Solver” on page 2-70. For this
example, use the results of that example, including the steady state value, x0.

The nonlinear bipolar transistor model, ssc_bipolar_nonlinear_trimlin,
introduced in the preceding example, has input and output ports that
guarantee a nontrivial input-output LTI model after linearization.

For general information about linearizing with Simulink, see “Linearizing a
Physical Model” on page 2-59.

¢ “Counting Model States” on page 2-71

¢ “Linearizing the Model at an Initial Steady State with 1inmod” on page 2-72

¢ “Linearizing the Model at a Specified Operating Point with 1inmod” on
page 2-72

¢ “Linearizing the Model at Multiple Simulation Times with a Linearization
Block” on page 2-72

e “Suitability of the Steady State for Linearization — Nonlinearity” on page
2-73

® “Analyzing the Linearization Results — Finding the Minimum Realization”
on page 2-74

Counting Model States

The state vector x of ssc_bipolar_nonlinear_trimlin contains 16 components.
The full model has one input and one output.

Thus, the LTI state-space models derived from linearization have the following
matrix sizes: A is 16-by-16; B is 16-by-1; Cis 1-by-16; and D is 1-by-1.

2-71

2 Model Simulation

2-72

Linearizing the Model at an Initial Steady State with 1inmod
First, linearize the model at an initial steady state. In the Solver
Configuration block, make sure that you have selected the Start simulation
from steady state check box. To capture the LTI matrices, enter:

[a0,b0,c0,d0] = linmod('ssc_bipolar_nonlinear_trimlin');

The state has 16 components. The 1inmod function alone, without an output

argument, generates a structure with states, inputs, and outputs, as well
as the LTI model.

Linearizing after a Change to Steady State Characteristics. Obtain
a different steady state and LTI by changing resistance R1 from 47 to 15
kOhms. Linearize again:

[a0_R1,b0_R1,c0_R1,d0_R1] = linmod('ssc_bipolar_nonlinear_trimlin');

Then change R1 back to 47 kOhms.

Linearizing the Model at a Specified Operating Point with
linmod

Second, linearize the model with the initial steady state captured as a state
vector, x0. Clear the Start simulation from steady state check box in the
Solver Configuration block. Then enter:

u = 0;
[a1,b1,c1,d1] = linmod('ssc_bipolar_nonlinear_trimlin',x0,u);

Verify that the two matrix sets, a0, b0, c0, d0 and a1, b1, c1, d1, do not
differ significantly. The operating point x0 was obtained from the Simscape
steady-state solver. If you saved this state as a vector in your workspace, you
do not need to invoke the steady-state solver again to solve for it.

Linearizing the Model at Multiple Simulation Times with a
Linearization Block
In the Solver Configuration block, reselect the Start simulation from
steady state check box.

Linearize an Electronic Circuit

Next, obtain a series of state vectors to linearize at multiple simulation times
using the Timed-Based Linearization block. Sample a few times uniformly
across one AC cycle near the steady state. The cycle period is 1 millisecond.

1 From the Simulink library, insert a Timed-Based Linearization block into
your model.

2 Open the linearization block. Into the Linearization time field, enter [0
0.25e-3 0.5e-3 0.75e-3]. Click OK.

This series of times samples the simulation at four, evenly spaced points
over one AC cycle.

3 In the Configuration Parameters dialog box, in the Data Import/Export
pane, make sure that you have selected Time, States, and Output.

4 Simulate the model. Check your workspace
for tout, xout, yout, and the structure called
ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization.

The structure has a component for each of the four linearization times. Verify
these times by entering:

ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization(1).0OperPoint.t

ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization(2).0OperPoint.t

and so on. Extract the LTI matrices for these four linearization times:

A1 = ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization(1).a;
B1 = ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization(1).b;
C1 = ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization(1).c;

D1 = ssc_bipolar_nonlinear_trimlin_Timed_Based_Linearization(1).d;

Create A2, B2, C2, D2 from the second linearization time, and so on.

Suitability of the Steady State for Linearization — Nonlinearity
Of the four LTI models created by time-based linearization, one comes from
the steady state itself and the other three from nearby states. If the steady
state is a good operating point for linearization, these LTI models do not
differ greatly from one another.

2-73

2 Model Simulation

2-74

Verify this suitability by direct comparison of the components of A1, A2, A3,
and A4. You can also derive and compare invariant scalar metrics from the
A matrices, such as the traces, to make sure that the LTI models vary only
slightly near the steady state.

Accuracy of Linear Approximation to Nonlinear Behavior. With
different circuit parameters, you can make this steady state less suitable for
linearization. The transistor collector current response to the base-emitter
voltage is exponential:

I, = Ilexp(Vyy/Vy) — 1],

where I, is the collector current, I is the temperature-dependent saturation
current for the transistor, Vg is the base-emitter voltage, and V; is the
normalized voltage = k;T/q = 25.3 mV at room temperature (17'= 20 °C = 293
K; kg = Boltzmann’s constant, g = electron charge) [2].

Adjusting the circuit characteristics can enhance this nonlinear character
and degrade the accuracy of a linear approximation to the circuit’s response
near the steady state.

Analyzing the Linearization Results — Finding the Minimum
Realization

Note To work through this section, you must have the Control System
Toolbox product.

Not all the states of the LTI models derived in this example are independent.
Confirm this by calculating the determinant of one of the A matrices; for
example, det (a0). These determinants vanish and imply one or more zero
eigenvalues.

Reducing and Analyzing the First Steady State. Before you can use one
of these LTI models, reduce the LTI matrices to a minimal realization. Obtain
a minimal realization with the minreal function:

[a2,b2,c2,d2] = minreal(a0,b0,c0,d0);
12 states removed.

Linearize an Electronic Circuit

Extracting the minimal realization eliminates 12 dependent states from
the LTI model, leaving four independent states. Analyze the control
characteristics of the reduced a2, b2, c2, d2 LTI model with a Bode plot:

bode(a2,b2,c2,d2) % Creates first Bode plot

Reducing and Analyzing a Second Steady State. The circuit with R1
changed from 47 to 15 kOhm has a different steady state and response.
Reduce this LTI model to a minimal realization as well and analyze its control
characteristics:

[a2_R1,b2_R1,c2_R1,d2_R1] = minreal(aO_R1,b0_R1,c0_R1,d0_R1); % 12 states removed.
hold on % Keeps first Bode plot open
bode(a2_R1,b2_R1,c2_R1,d2_R1) % Superposes second Bode plot on first

The second LTI model is reduced to four independent states.

2-75

2 Model Simulation

2-76

R1 =47 kOhm
R1 =15 kOhm

R1 =47 kOhm
R1 =15 kOhm

Limitations

Limitations

In this section...

“Sample Time and Solver Restrictions” on page 2-77

“Algebraic Loops” on page 2-77

“Restricted Simulink Tools” on page 2-78

“Unsupported Simulink Tools” on page 2-80

“Simulink Tools Not Compatible with Simscape Blocks” on page 2-80

“Code Generation” on page 2-81

Sample Time and Solver Restrictions

The default sample times of Simscape blocks are continuous. You cannot
simulate Simscape blocks with discrete solvers using the default sample times.

If you switch to a local solver in the Solver Configuration block, the states of
the associated physical network become discrete. If there are no continuous
Simulink or Simscape states anywhere in a model, you are free to use a
discrete solver to simulate the model.

You cannot override the sample time of a nonvirtual subsystem containing
Simscape blocks.

Algebraic Loops

A Simscape physical network should not exist within a Simulink algebraic
loop. This means that you should not directly connect an output of a
PS-Simulink Converter block to an input of a Simulink-PS Converter block of
the same physical network.

For example, the following model contains a direct feedthrough between
the PS-Simulink Converter block and the Simulink-PS Converter block
(highlighted in magenta). To avoid the algebraic loop, you can insert a
Transfer Function block anywhere along the highlighted loop.

2-77

2 Model Simulation

2-78

T

alve Subsystem

e b
qf]/’. fxp=0 ldeal Translationsl

Mation Sensor

Position

Sine Wave Power Unit

A better way to avoid an algebraic loop without introducing additional
dynamics is shown in the modified model below.

T

alve Subsystem

b
T E M FSS

- = |
d V) =0 Ideal Transational D—’ 4’@
) FSBmuine]

Mation Sensor

Converter Fosition
P—l=h— 1
— [» f

Sine Wave Simuline-PS Power Unit
Converter

PS5 Subtract PS5 Gain

Restricted Simulink Tools

Certain Simulink tools are restricted for use with Simscape software:

® You can use the Simulink set_param and get_param commands to set or
get Simscape block parameters, if the parameters correspond to fields in
the block dialog box. MathWorks does not recommend that you use these
commands to find or change any other block parameters.

Limitations

If you make changes to block parameters at the command line, run your
model first before saving it. Otherwise, you might save invalid block
parameters. Any block parameter changes that you make with set _param
are not validated unless you run the model.

Simscape blocks accept Simulink.Parameter objects as parameter values
in get_param and set_param, within the restrictions specified here.

Enabled subsystems can contain Simscape blocks. Always set the States
when enabling parameter in the Enable dialog to held for the subsystem’s
Enable port.

Setting States when enabling to reset is not supported and can lead
to fatal simulation errors.

You can place Simscape blocks within nonvirtual subsystems that support
continuous states. Nonvirtual subsystems that support continuous states
include Enabled subsystems and Atomic subsystems. However, physical
connections and physical signals must not cross nonvirtual boundaries.
When placing Simscape blocks in a nonvirtual subsystem, make sure

to place all blocks belonging to a given Physical Network in the same
nonvirtual subsystem.

Simulink configurable subsystems work with Simscape blocks only if all of
the block choices have consistent port signatures.

For Iterator, Function-Call, Triggered, and While Iterator nonvirtual
subsystems cannot contain Simscape blocks.

An atomic subsystem with a user-specified (noninherited) sample time
cannot contain Simscape blocks.

When using SimState to save and restore simulations of models, you cannot
make any changes to the Simscape blocks in the model between the time
at which you save the SimState and the time at which you restore the
simulation using the SimState.

This is an extension of the Simulink limitation prohibiting structural
changes to the model between these two points in time (see “Limitations of
the SimState”). Changes to Simscape block parameters can cause equation
changes and result in changes to the state representation. Therefore,
modifying parameters of Simscape blocks between saving and restoring
the SimState is not allowed.

2-79

2 Model Simulation

® You can use the Simulink Save As command only to rename Simscape
models within the current version. Saving in a previous version format is
not supported for models containing Simscape blocks.

e Linearization with the Simulink 1inmod function or with equivalent
Simulink Control Design functions and graphical interfaces is not
supported with Simscape models if you use local solvers.

® Model referencing is supported, with some restrictions:

= All Physical connection lines must be contained within the referenced
model. Such lines cannot cross the boundary of the referenced model
subsystem in the referencing model.

= The referencing model and the referenced model must use the same
solver.

Unsupported Simulink Tools

Certain Simulink tools and features do not work with Simscape software:

® The Simulink Profiler tool does not work with Simscape models.

® Physical signals and physical connection lines between conserving ports are
different from Simulink signals. Therefore, the Signal and Scope Manager
tool and the signal label functionality are not supported.

Simulink Tools Not Compatible with Simscape Blocks
Some Simulink tools and features do not work with Simscape blocks:

® Execution order tags do not appear on Simscape blocks.
® Simscape blocks do not invoke user-defined callbacks.

® You cannot set breakpoints on Simscape blocks.

Reusable subsystems cannot contain Simscape blocks.

® You cannot use the Simulink Fixed-Point Tool with Simscape blocks.

The Report Generator reports Simscape block properties incompletely.

2-80

Limitations

Code Generation

Code generation is supported for Simscape physical modeling software and its
family of add-on products. However, there are restrictions on code generated
from Simscape models.

® Code reuse is not supported.

¢ Encapsulated C++ code generation is not supported.

® Tunable parameters are not supported.

® Run-time parameter inlining ignores global exceptions.

e Simulation of Simscape models on fixed-point processors is not supported.

® Block diagnostics in error messages are not supported. This means that
if you get an error message from simulating generated code, it does not
contain a list of blocks involved.

¢ Conversion of models or subsystems containing Simscape blocks to
S-functions is not supported.

® Software-in-the-loop (SIL) simulation is not supported.

“Code Generation” on page 2-35 describes Simscape code generation features.
“Restricted Simulink Tools” on page 2-78 describes limitations on model
referencing.

There are variations and exceptions as well in the code generation features
of the add-on products based on Simscape platform. For details, see
documentation for individual add-on products.

Code Generation and Fixed-Step Solvers

Most code generation options for Simscape models require the use of fixed-step
Simulink solvers. This table summarizes the available solver choices,
depending on how you generate code.

2-81

2 Model Simulation

2-82

Code Generation Option

Solver Choices

Accelerator mode
Rapid Accelerator mode

Variable-step or fixed-step

Simulink Coder software: RSim Target*

Variable-step or fixed-step

Simulink Coder software: Targets other
than RSim

Fixed-step only

* For the RSim Target, Simscape software supports only the Simulink
solver module. In the model Configuration Parameters dialog box, see the
Code Generation: RSim Target: Solver selection menu. The default is
automatic selection, which might fail to choose the Simulink solver module.

References

References

[1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia, Society
for Industrial and Applied Mathematics, 2004, chapter 7

[2] Horowitz, P., and Hill, W., The Art of Electronics, 2nd Ed., Cambridge,
Cambridge University Press, 1989, chapter 2

[3] Brogan, W. L., Modern Control Theory, 2nd Ed., Englewood Cliffs, New
Jersey, Prentice-Hall, 1985

2-83

2 Model Simulation

2-84

Data Logging

® “About Simulation Data Logging” on page 3-2
¢ “How to Log Simulation Data” on page 3-3

¢ “Log and Plot Simulation Data” on page 3-7

® “Log Simulation Statistics” on page 3-13

3 Data Logging

About Simulation Data Logging

3-2

In this section...

“Suggested Workflows” on page 3-2

“Limitations” on page 3-2

Suggested Workflows

You can log simulation data to the workspace for debugging and verification.
Data logging lets you analyze how internal block variables change with time
during simulation. For example, you may want to see that the pressure in a
hydraulic cylinder is above some minimum value, or compare it against the
pump pressure. If you log simulation data to the workspace, you can later
query, plot, and analyze it without rerunning the simulation.

Simulation data logging can also replace connecting sensors and scopes to
track simulation data. These blocks increase the model complexity and slow
down simulation. The “Log and Plot Simulation Data” on page 3-7 shows how
you can log and plot simulation data instead of adding sensors to your model.
It also shows how you can print the complete logging tree for a model, and
plot simulation results for a selected variable.

For additional information, see the reference pages for the classes
simscape.logging.Node, simscape.logging.Series, and their associated
methods.

Limitations

Simulation data logging is not supported for:

e Model reference
e Generated code
e Accelerator mode

¢ Rapid Accelerator mode

How to Log Simulation Data

How to Log Simulation Data

In this section...

“How to Enable Data Logging” on page 3-3

“Data Logging Options” on page 3-4

How to Enable Data Logging

By default, simulation data is not logged. To turn on the data logging for a
model, use the Log simulation data configuration parameter.

1 In the model window, from the top menu bar, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the Configuration Parameters dialog box, in the left pane, select
Simscape. The right pane displays the Log simulation data option,
which is set to none, by default.

3 From the drop-down list, select all, then click OK.

3 Data Logging

% Configuration Parameters: mech_simple/Configuration [Active) =
Select: Editing =
Solver Editing Made: Full '|
Data Import/Export
i O.pt\m\za.tmn Physical Networks Model-Wide Simulation Diagnostics
+l-Diagnostics
~Hardware Implementation | Explicit solver used in model containing Physical Networks blocks: |warning =
Model Referencing —
“Simulstion Target Zero-crossing control is globally disabled in Simulink: warning v

&

~Code Generation
~Simscape

~SimMechanics 1G
~SimMechanics 2G

Data Logging

Log simulation data: all b |

"

Log simulation statistics

m

Workspace variable name: simlog
Decimation: 1
V| Limit data points

Data history (last M steps): 5000

. I »

J 0K H Cancel || Help H Apply |

4 Simulate the model. This creates a workspace variable named simlog (as
specified by the Workspace variable name parameter), which contains
the simulation data.

For information on how to access and use the data stored in this variable, see
“Log and Plot Simulation Data” on page 3-7.

Data Logging Options

When you set the Log simulation data configuration parameter to all,
other options in the Data Logging group box become available.

¢ Log simulation statistics — Select this checkbox if you want to access
and analyze information on zero crossings during simulation. By default,
this checkbox is not selected and the zero-crossing data is not logged. For
more information on using this checkbox, see “Log Simulation Statistics”
on page 3-13.

3-4

How to Log Simulation Data

* Workspace variable name — Specifies the name of the workspace
variable that stores the simulation data. Subsequent simulations overwrite
the data in the simulation log variable. If you want to compare data from
two models or two simulation runs, use different names for the respective
log variables. The default variable name is simlog.

¢ Decimation — Use this parameter to limit the number of data points
saved, by outputting data points for every nth time step, where n is the
decimation factor. The default is 1, which means that all points are logged.
Specifying a different value results in the first step, and every nth step
thereafter, being logged. For example, specifying 2 logs data points for
every other time step, while specifying 10 logs data points for just one
in ten steps.

* Limit data points — Use this checkbox in conjunction with the Data
history (last N steps) parameter to limit the number of data points
saved. The checkbox is selected by default. If you clear it, the simulation
log variable contains the data points for the whole simulation, at the price
of slower simulation speed and heavier memory consumption.

¢ Data history (last N steps) — Specify the number of simulation steps to
limit the number of data points output to the workspace. The simulation
log variable contains the data points corresponding to the last N steps of the
simulation, where N is the value that you specify for the Data history (last
N steps) parameter. You have to select the Limit data points checkbox
to make this parameter available. The default value logs simulation data
for the last 5000 steps. You can specify any other positive integer number.
If the simulation contains fewer steps than the number specified, the
simulation log variable contains the data points for the whole simulation.

Saving data to the workspace can slow down the simulation and consume
memory. To avoid this, you can use either the Decimation parameter, or
Limit data points in conjunction with Data history (last N steps), or both
methods, to limit the number of data points saved. The two methods work
independently from each other and can be used separately or together. For
example, if you specify a decimation factor of 2 and keep the default value

of 5000 for the Data history (last N steps) parameter, your workspace
variable will contain downsampled data from the last 10000 time steps in the
simulation.

3-5

3 Data Logging

Note The Output options parameter, on the Data Import/Export pane of
the Configuration Parameters dialog box, also affects which data points are
logged. For more information, see “Data Import/Export Pane” in the Simulink
documentation.

After changing your data logging preferences, rerun the simulation to
generate a new data log.

3-6

Log and Plot Simulation Data

Log and Plot Simulation Data

This example shows how you can log and plot simulation data instead of
adding sensors to your model.

The model shown represents a permanent magnet DC motor.

—H

Mator

Inestia | Load Torque

Apphy stall
torque at
t=0.1s

yyy - LYY g
Rotor L !
Resistance.R

15v C

Rotational
Electromechanical

Cometer T Friction e
A

fe=0 J

Solver = E

Configuration

This model is very similar to the Permanent Magnet DC Motor example, but,
unlike the example model, it does not include the Ideal Rotational Motion
Sensor and the Current Sensor blocks, along with the respective PS-Simulink
Converter blocks and scopes. For a detailed description of the Permanent
Magnet DC Motor example, see “Evaluating Performance of a DC Motor”.

1 Build the model, as shown in the preceding illustration.
2 To enable data logging, open the Configuration Parameters dialog box,

in the left pane, select Simscape, then set the Log simulation data
parameter to all and click OK.

3-7

../examples/permanent-magnet-dc-motor.html

3 Data Logging

% Configuration Parameters: de_motor2/Cenfiguration (Active) =
Select: Editing =
Solver -
Editing Mode: Full ~
Data Import/Export g I I
+-Qptimization

Physical Networks Model-Wide Simulation Diagnostics

5

Diagnostics
~Hardware Implementation | Explicit solver used in model containing Physical Networks blocks: |warning =
Model Referencing

“Simulstion Target Zero-crossing control is globally disabled in Simulink: warning v
+-Code Generation X
~Simscape Data Logging

~SimMechanics 1G

Log simulation data: all ']
~SimMechanics 2G

"

["] Log simulation statistics

m

Workspace variable name: simlog
Decimation: 1
Limit data points

Data history (last M steps): 5000

. I »

\), oK H Cancel H Help J Apply

3 Simulate the model. This creates a workspace variable named simlog (as
specified by the Workspace variable name parameter), which contains
the simulation data.

4 The simlog variable has the same hierarchy as the model. To see the whole
variable structure, at the command prompt, type:

simlog.print
This command prints the whole data tree.

dc_motor2
+-Electrical_Reference2
| +-v
|| +-v

| i
+-Friction_Mr
| +-C

|| +-w

3-8

Log and Plot Simulation Data

|

|

|
+-Mechanical_Rotational_Reference1
| W

|| +-w

|+t
+-Motor_Inertia_J
|+

|| +-w

|+t
+-Rotational_Electromechanical_Converter
¥

+ —

-C
+-w

-R
+-w

|
+-
+-

+ 5 H

-V

3-9

3 Data Logging

3-10

+-Simulink_PS_Converter
+-x1_5V

+-1

+-n

| +-v

*t-p

| v

+-v

5 Every node that represents an Across, Through, or internal block variable

contains series data. To get to the series, you have to specify the complete
path to it through the tree, starting with the top-level variable name. For
example, to get a handle on the series representing the angular velocity of
the motor, type:

s1 = simlog.Rotational_Electromechanical_Converter.R.w.series;

From here, you can access the values and time vectors for the series and
analyze them.

6 You do not have to isolate series data to plot its values against time,

or against another series. For example, to see how the motor speed (in
revolutions per minute) changes with time, type:

plot(simlog.Rotational_Electromechanical_Converter.R.w, 'units', 'rpm')

Log and Plot Simulation Data

W, TRIT

5 01 012 014 016 018 0.2

7 Compare this figure to the RPM scope display in the Permanent Magnet
DC Motor example. The results are exactly the same.

8 To plot the motor torque against its angular velocity, in rpm, and add
descriptive axis names, type:

plotxy(simlog.Rotational_Electromechanical_Converter.R.w, simlog.Motor_Inertia_J.t,
'xunit', ‘'rpm', 'xname', 'Angular velocity', 'yname', 'Torque')

3-11

../examples/permanent-magnet-dc-motor.html
../examples/permanent-magnet-dc-motor.html

3 Data Logging

3-12

w10

Torque, M*m

o 02 04 0k 08 1 1.2 1.4 16 1.8 2
Angular welocity, rpm 4

For more information on plotting logged simulation data, see the
simscape.logging.plot and simscape.logging.plotxy reference pages.

Note Plotting simulation data for a high-level node and its children can
generate a large number of plots. By default, the plots are not docked
in the desktop, which results in a multitude of separate figure windows.
To avoid this inconvenience, you can issue a command to make figures
automatically dock in the desktop. For more information, see “Docking
Figures Automatically” in the MATLAB documentation.

Log Simulation Statistics

Log Simulation Statistics

This example shows how you can access and analyze information on zero
crossings during simulation. By default, the zero-crossing data is not logged.
If you select the Log simulation statistics checkbox, the simulation log
variable contains an additional SimulationStatistics node for each block
that can produce zero crossings, at the price of slower simulation speed and
heavier memory consumption.

The model shown represents a permanent magnet DC motor.

—H

Mator

Inestia | Load Torque

Apphy stall
torque at
t=0.1s

yyy - LYY g
Rotor L !
Resistance.R

15v C

Rotational
Electromechanical

Cometer T Friction e
A

=0 J

Solver = E

Configuration

This model is the same as the one used in the “Log and Plot Simulation Data”
on page 3-7 example.

1 Build the model, as shown in the preceding illustration.

2 To enable data logging, open the Configuration Parameters dialog box,
in the left pane, select Simscape, then set the Log simulation data
parameter to all, select the Log simulation statistics checkbox, and
click OK.

3-13

3 Data Logging

% Configuration Parameters: de_motor2/Cenfiguration (Active) =
Select: Editing -
Solver Editing Mode: Full v|
Data Import/Export
i O.pt\m\za.tmn Physical Networks Model-Wide Simulation Diagnostics
+l-Diagnostics

~Hardware Implementation | Explicit solver used in model containing Physical Networks blocks: |warning =
Model Referencing

“Simulstion Target Zero-crossing control is globally disabled in Simulink: warning v
+-Code Generation X
~Simscape Data Logging

~SimMechanics 1G

Log simulation data: all b |
~SimMechanics 2G

"

¥| Log simulation statistics

m

Workspace variable name: simlog
Decimation: 1
V| Limit data points

Data history (last M steps): 5000

. I »

7] 0K H Cancel || Help ‘ Apply

3 Simulate the model. This creates a workspace variable named simlog (as
specified by the Workspace variable name parameter), which contains
the simulation data. Because you selected the Log simulation statistics
checkbox, the workspace variable contains additional nodes that represent
zero-crossing data.

4 The simlog variable has the same hierarchy as the model. To see the whole
variable structure, at the command prompt, type:

simlog.print
This command prints the whole data tree.

dc_motor2
+-Electrical_Reference2
|+
|| +-v

| +-1
+-Friction_Mr

3-14

Log Simulation Statistics

+ W + VW + O

+-values

|

|

|
+-Mechanical_Rotational_Referencel
|+

|

| +w
| -t

3-15

3 Data Logging

+-Motor_Inertia_J

|+

|| +-w

|+t
+-Rotational_Electromechanical_Converter
-C

+
-R
+

S e

+
'
<

+ + + — + — + + — + — +
< + + ©
)
<

-w
-Rotor_ResistanceR
-i
-n

+-v

+ — + — + o+
\
+ ©
)

'
<

+ — — - — — — 4+ — — — — — — — — — — — —

-x1_5V

+-n
| 4o
+-p

| 4o

+-v

5 If you compare this tree to the one used in the “Log and Plot Simulation
Data” on page 3-7 example, you can see that under the Friction_Mr node
there is now an additional node called SimulationStatistics. The rest of
the tree is unchanged. This means that Friction Mr is the only block in the
model that can generate zero-crossings during simulation.

3-16

Log Simulation Statistics

6 You can access and analyze this data similar to other data logged
to workspace during simulation. For more information, see
simscape.logging.Node and simscape.logging.Series reference pages.

3-17

3 Data Logging

3-18

Physical Units

e “How to Work with Physical Units” on page 4-2

e “Unit Definitions” on page 4-4

¢ “How to Specify Units in Block Dialogs” on page 4-10

¢ “Thermal Unit Conversions” on page 4-12

¢ “Angular Units” on page 4-16

e “Units for Angular Velocity and Frequency” on page 4-17

4 Physical Units

How to Work with Physical Units

4-2

Unlike Simulink signals, which are essentially unitless, physical signals
can have units associated with them. You specify the units along with the
parameter values in the block dialogs, and Simscape unit manager performs
the necessary unit conversion operations when solving a physical network.
Simscape blocks support standard measurement systems. The default block
units are meter-kilogram-second or MKS (SI).

Simscape software comes with a library of standard units, and you can define
additional units as needed (see “Unit Definitions” on page 4-4). You can use

these units in your block diagrams:

¢ To specify the units of an input physical signal, type a unit name, or a

mathematical expression with unit names, in the Input signal unit field
of the Simulink-PS Converter block dialog. You can also select a unit
from a drop-down list, which is prepopulated with some common input
units. Signal units that you specify in a Simulink-PS Converter block must
match the input type expected by the Simscape block connected to it. For
example, when you provide the input signal for an Ideal Angular Velocity
Source block, specify angular velocity units, such as rad/s or rpm, in the
Simulink-PS Converter block, or leave it unitless. If you leave the block
unitless, with the Input signal unit parameter set to 1, then the physical
signal units are inferred from the destination block.

Simscape block dialogs have drop-down combo boxes of units next to a
parameter value, letting you either select a unit from the drop-down list, or
type a unit name (or a mathematical expression with unit names) directly
into the box. These drop-down lists are automatically populated by those
units that are commensurate with the unit of the parameter, based on the
current list of unit definitions. For example, if a parameter is specified, by
default, with the units of meters per second, m/s, the drop-down list of units
contains commensurate units, such as mm/s, in/s, fps (feet per second),
fpm (feet per minute), and so on, including any other linear velocity units
currently defined in your unit registry.

To specify the units of an output physical signal, type a unit name, or a
mathematical expression with unit names, in the OQutput signal unit
field of the PS-Simulink Converter block dialog. You can also select a unit
from a drop-down list, which is prepopulated with some common output
units. The system compares the units you specified with the actual units

How to Work with Physical Units

of the input physical signal coming into the converter block and applies a
gain equal to the conversion factor before outputting the Simulink signal.
The default value is 1, which means that the unit is not specified. If you
do not specify a unit, or if the unit matches the actual units of the input

physical signal, no gain is applied.

For more information, see “How to Specify Units in Block Dialogs” on page
4-10.

Note Currently, the blocks in the Physical Signals library (such as PS Add,
PS Gain, and so on) ignore the physical unit of the input signal and just
perform calculations on the value. The output signals of the Physical Signals

library blocks are unitless.

4-3

4 Physical Units

Unit Definitions

Simscape unit names are defined in the pm_units.m file, which is shipped with
the product. You can open this file to see how the physical units are defined in
the product, and also as an example when adding your own units. This file is

located in the directory matlabroot\toolbox\physmod\common\units\mli\m.

Default registered units and their abbreviations are listed in the following
table. Use the pm_getunits command to get an up-to-date list of units
currently defined in your unit registry. Use the pm_adddimension and

pm_addunit commands to define additional units.

Physical Unit Abbreviations Defined by Default in the Simscape Unit

Registry
Quantity Abbreviation Unit
Acceleration gee Earth gravitational
acceleration (9.80665
m/s”2)
Amount of substance mol Mole
Angle rad Radian
deg Degree
rev Revolution
Angular velocity rpm Revolutions/minute
Capacitance F Farad
pF Picofarad
nF Nanofarad
ufF Microfarad
Charge c Coulomb

Unit Definitions

Physical Unit Abbreviations Defined by Default in the Simscape Unit

Registry (Continued)

Quantity Abbreviation Unit
Conductance S Siemens

ns Nanosiemens

us Microsiemens

mS Millisiemens
Current A Ampere

pA Picoampere

nA Nanoampere

UA Microampere

mA Milliampere

kA Kiloampere
Energy J Joule

Btu British thermal unit

ev Electronvolt
Flow rate lpm Liter/minute

gpm Gallon/minute
Force N Newton

dyn Dyne

1bf Pound-force

mN Millinewton
Frequency Hz Hertz

kHz Kilohertz

MHz Megahertz

GHz Gigahertz

4 Physical Units

4-6

Physical Unit Abbreviations Defined by Default in the Simscape Unit

Registry (Continued)

Quantity Abbreviation Unit
Inductance H Henry

uH Microhenry

mH Millihenry
Length m Meter

cm Centimeter

mm Millimeter

km Kilometer

um Micrometer

in Inch

ft Foot

mi Mile

yd Yard
Magnetic flux Wb Weber
Magnetic flux density T Tesla

G Gauss
Mass kg Kilogram

g Gram

mg Milligram

lbm Pound mass

0z Ounce

slug Slug

Unit Definitions

Physical Unit Abbreviations Defined by Default in the Simscape Unit
Registry (Continued)

Quantity Abbreviation Unit
Pressure Pa Pascal
kPa Kilopascal
MPa Megapascal
GPa Gigapascal
bar Bar
kbar Kilobar
atm Atmosphere
psi Pound/inch”2
Power w Watt
uw Microwatt
mw Milliwatt
kw Kilowatt
MW Megawatt
HP Horsepower
Resistance Ohm Ohm
kOhm Kiloohm
MOhm Megaohm
GOhm Gigaohm
Temperature K Kelvin
C Celsius
Fh Fahrenheit
R Rankine

4-7

4 Physical Units

4-8

Physical Unit Abbreviations Defined by Default in the Simscape Unit

Registry (Continued)

Quantity Abbreviation Unit
Time S Second
min Minute
hr Hour
ms Millisecond
us Microsecond
ns Nanosecond
Velocity mph Miles/hour
fpm Feet/minute
fps Feet/second
Viscosity absolute Poise Poise
cP Centipoise
reyn Reyn
Viscosity kinematic St Stokes
cSt Centistokes
Newt Newt
Volume 1 Liter
gal US liquid gallon
igal Imperial (UK) gallon
Voltage v Volt
mv Millivolt
kv Kilovolt

Unit Definitions

Note This table lists the unit abbreviations defined in the product. For
information on how to use the abbreviations above, or mathematical
expressions with these abbreviations, to specify units for the parameter values
in the block dialogs, see “How to Specify Units in Block Dialogs” on page 4-10.

4-9

4 Physical Units

How to Specify Units in Block Dialogs

4-10

Simscape block dialogs have drop-down combo boxes for units next to a
parameter value. For example, in the Constant Volume Chamber block dialog
box, the drop-down list for the Chamber volume parameter contains 1, gal,
in~3, ft~3, mm~3, cm~3, m"3, and km"3, and the drop-down list for the Initial
pressure parameter contains Pa, bar, psi, and atm.

You can either select a unit from the drop-down list, or type a commensurate
unit name (or a mathematical expression with unit names) directly into the
unit combo box of the block dialog. You can use the abbreviations for the
units defined in your registry, or any valid mathematical expressions with
these abbreviations. For example, you can specify torque in newton-meters
(N*m) or pound-feet (1bf*ft). To specify velocity, you can use one of the
defined unit abbreviations (mph, fpm, fps), or an expression based on any
combination of the defined units of length and time, such as meters/second
(m/s), millimeters/second (mm/s), inches/minute (in/min), and so on.

Note Affine units (such as Celsius or Fahrenheit) are not allowed in unit
expressions. For more information, see “About Affine Units” on page 4-12.

The following operators are supported in the unit mathematical expressions:

* Multiplication

/ Division

" Power

+ Plus — for exponents only

- Minus — for exponents only

() Brackets to specify evaluation order

Metric unit prefixes, such as kilo, milli, or micro, are not supported. For
example, if you want to use milliliter as a unit of volume, you have to add
it to the unit registry:

pm_addunit('ml’, 0.001, '1');

How to Specify Units in Block Dialogs

The drop-down lists next to parameter names are automatically populated
by those units that are commensurate with the unit of the parameter. If you
specify the units by typing, it is your responsibility to enter units that are
commensurate with the unit of the parameter. The unit manager performs
error checking when you click Apply or OK in the block dialog box, and issues
an error if you type an incorrect unit.

In the Simulink-PS Converter and the PS-Simulink Converter block dialog
boxes, the drop-down lists are prepopulated with some common input and
output units, and it is your responsibility to select or type a unit expression
commensurate with the expected input or output units. The error checking
for the converter blocks is performed at the time of simulation. See “Model
Validation” on page 2-7 for details.

4-11

4 Physical Units

Thermal Unit Conversions

In this section...
“About Affine Units” on page 4-12

“When to Apply Affine Conversion” on page 4-12
“How to Apply Affine Conversion” on page 4-13

About Affine Units

Thermal units often require an affine conversion, that is, a conversion that
performs both multiplication and addition. To convert from the old value T,
to the new value T' , we need a linear conversion coefficient L and an offset O:

new’
— *
Tnew =L Told +0

For example, to convert a temperature reading from degrees Celsius into
degrees Fahrenheit, the linear term equals 9/5, and the offset equals 32:
Ty

Qa

hr:9/5*TCels+32

Simscape unit manager defines kelvin (K) as the fundamental temperature
unit. This makes Celsius (C) and Fahrenheit (Fh) affine units because they
are both related to kelvin with an affine conversion. Rankine (R) is defined in
terms of kelvin with a zero linear offset and, therefore, is not an affine unit.

The following are the default Simscape unit registry definitions for
temperature units:

pm_adddimension('temperature', 'K'); % defines kelvin as fundamental temperature unit
pm_addunit('C', [1 273.15], 'K'); % defines Celsius in terms of kelvin
pm_addunit('Fh', [5/9 -32*5/9], 'C'); % defines Fahrenheit in terms of Celsius
pm_addunit('R"', [5/9 0], 'K'); % defines rankine in terms of kelvin

When to Apply Affine Conversion

In dealing with affine units, sometimes you need to convert them using just
the linear term. Usually, this happens when the value you convert represents
relative, rather than absolute, temperature, AT =T, - T,,.

4-12

Thermal Unit Conversions

ATnew =L* ATold
In this case, adding the affine offset would yield incorrect conversion results.

For example, the outdoor temperature rose by 18 degrees Fahrenheit, and
you need to input this value into your model. When converting this value into
kelvin, use linear conversion

AT,

kelvin

=5/9% ATy,

and you get 10 K, that is, the outdoor temperature changed by 10 kelvin.
If you apply affine conversion, you will get a temperature change of
approximately 265 kelvin, which is incorrect.

This is even better illustrated if you use degrees Celsius for the input units
because the linear term for conversion between Celsius and kelvin is 1:

e [If the outdoor temperature changed by 10 degrees Celsius (relative
temperature value), then it changed by 10 kelvin (do not apply affine
conversion).

e [If the outdoor temperature is 10 degrees Celsius (absolute temperature
value), then it is 283 kelvin (apply affine conversion).

How to Apply Affine Conversion

When you specify affine units for an input temperature signal, it 1s important
to consider whether you need to apply affine conversion. Usually this decision
depends on whether the signal represents absolute or relative temperature
(see “When to Apply Affine Conversion” on page 4-12).

For example, you model a house-heating system, and you need to input the
outdoor temperature. In the following diagram, the Constant source block
represents the average outdoor temperature, in degrees Celsius, and the
Sine source block adds the daily temperature variation. The average outdoor
temperature, in this case, is 12 degrees Celsius. Daily variation with an
amplitude of 8 makes the input outdoor temperature vary between 4 and 20
degrees Celsius.

4-13

4 Physical Units

4-14

12 »() psPs
+ —
Ayerage Outdoor Simulink-F3
Temperature Converter
Howse ﬁea%ng gys (=)
Daily Temperatre
“aristicn

This signal is an absolute temperature reading. Therefore, when the signal
converts into kelvin for further computations, you need to specify that

it should use affine conversion. Double-click the Simulink-PS Converter
block, type C in the Input signal unit field, and select the Apply affine
conversion check box.

Thermal Unit Conversions

E Block Pararneters: Simulink-P5 Converter @
Simulink-PS Converter
Converts the unitless Simulink input signal to a Physical Signal.
The unit expression in 'Input signal unit' parameter is associated with

the unitless Simulink input signal and determines the unit assigned to
the Physical Signal.

‘Apply affine conversion' check box is only relevant for units with
offset (such as temperature units).

There are three options to handle the input: you can use it as is,
filker input, or provide the input derivatives through additional signal
ports. Input filtering also provides time derivatives. The first-order
filker provides one derivative, while the second-order filter provides
the first and second derivatives.

Parameters

Units | Input Handling

Input signal unit: C -

Apply affine conversion

[0K][Cancel ” Help l Apply

As a result, the Simulink-PS Converter block outputs a value varying between
277 K and 293 K.

4-15

4 Physical Units

Angular Units

4-16

Simscape implementation of angular units relies on the concept of angular
units, specifically radians, being a unit but dimensionless. The notion of
angular units being dimensionless is widely held in the metrology community.
The fundamental angular unit, radian, is defined in the Simscape unit
registry as:

pm_addunit('rad', 1, 'm/m');

which corresponds to the SI and NIST definition [1]. In other words, Simscape
unit manager does not introduce a separate dimension, 'angle', with a
fundamental unit of 'rad' (similar to dimensions for length or mass), but
rather defines the fundamental angular unit in terms of meter over meter or,
in effect, 1.

The additional angular units, degree and revolution, are defined respectively
as:

pm_addunit('deg', pi/180, 'rad');
pm_addunit('rev', 2*pi, 'rad');

As a result, forward trigonometric functions, such as sin, cos, and tan, work

directly with arguments expressed in angular units. For example, cosinus of

90 degrees equals the cosinus of (pi/2) radians and equals the cosinus of (pi/2).
Expansion of forward trigonometric functions works in a similar manner.

Another effect of dimensionless implementation of angular units is the
convenience of the work-energy conversion. For example, torque (in N*m)
multiplied by angle (in rad) can be added directly to energy (in J, or N*m). If
you specify other commensurate units for the components of this equation,
Simscape unit manager performs the necessary unit conversion operations
and the result is the same.

References

[1] The NIST Reference on Constants, Units, and Uncertainty,
http://physics.nist.gov/cuu/Units/units.html

http://physics.nist.gov/cuu/Units/units.html

Units for Angular Velocity and Frequency

Units for Angular Velocity and Frequency

Angular velocity units, such as rad/s, deg/s, and rpm, can also be used to
measure frequency for cyclical processes. This is consistent with frequency
defined as revolutions per second in a mechanical context, or cycles per second
in an electrical context, and lets you write frequency-dependent equations
without requiring the 2*pi conversion factor. In the SI unit system, however,
the unit of frequency is hertz (Hz), defined as 1/s.

Simscape software defines the unit hertz (Hz) as 1/s, in compliance with

the SI unit system. This definition works well when frequency refers to a
nonrotational periodic signal such as the frequency of a PWM source. For
cyclical processes, however, the block equations have to contain the 2*pi

conversion factor, to convert the numerical value specified in Hz, or s, to
angular frequency.

As a result, frequency units (based on Hz) and angular velocity units (based on
rpm) are not directly convertible, and using one instead of the other may result
in unexpected conversion factors applied to the numerical values by the block
equations. For example, the AC Voltage Source block explicitly multiplies
the value you specify for its Frequency parameter by 2*pi, to convert it to
angular frequency before calculating the sine function.

Drop-down lists of suggested units in block dialogs reflect this distinction. For
example, if a block has a Frequency parameter with the default unit of Hz,
the drop-down list for this parameter contains only units directly convertible
to Hz (such as kHz, MHz, and GHz) and does not contain the angular velocity
units. Conversely, if you define a custom block where the Frequency
parameter has the default unit of rpm, its drop-down list of suggested units
will include deg/s and rad/s, but will not contain Hz, kHz, MHz, or GHz.

When you type a unit expression in the parameter units combo box (instead
of selecting a value from the drop-down list), the Simscape unit manager
considers the units of frequency and angular velocity to be commensurate. For
example, when the default parameter unit is Hz, you are able to type not only
1/s, but also expressions such as deg/s and rad/s. This behavior is consistent
with the Simscape implementation of angular units (see “Angular Units” on
page 4-16). It is your responsibility to verify that the unit expression you
typed works correctly with the block equations and reflects your design intent.

4-17

4 Physical Units

Note Prior to Release R2013a, the unit definition for Hz was rev/s. For
information on how to update legacy models and custom Simscape libraries
written in R2012b or earlier, see Compatibility Considerations under “Unit
definition of Hz now consistent with SI”, in the R2013a Release Notes.

4-18

Add-On Product License
Management

e “About the Simscape Editing Mode” on page 5-2
e “Working with Restricted and Full Modes” on page 5-9
¢ “Editing Mode Information” on page 5-24

5 Add-On Product License Management

5-2

About the Simscape Editing Mode

In this section...

“Suggested Workflows” on page 5-2

“What You Can Do in Restricted Mode” on page 5-3
“What You Can Do in Full Mode” on page 5-4
“Switching Between Modes” on page 5-4

“Working with Block Libraries” on page 5-7

Suggested Workflows

The Simscape Editing Mode functionality is implemented for customers

who perform physical modeling and simulation using Simscape platform

and its add-on products: SimDriveline™, SimElectronics®, SimHydraulics,
SimMechanics™, and SimPowerSystems™. It allows you to open, simulate,
and save models that contain blocks from add-on products in Restricted mode,
without checking out add-on product licenses, as long as the products are
installed on your machine. It is intended to provide an economical way to
distribute simulation models throughout a team or organization.

Note Unless your organization uses concurrent licenses, see the Simscape
product page on the MathWorks Web site for specific information on how to
install add-on products on your machine, to be able to work in Restricted mode.

The Editing Mode functionality supports widespread use of Physical Modeling
products throughout an engineering organization by making it economical for
one user to develop a model and provide it to many other users.

Specifically, this feature allows a user, model developer, to build a model that
uses Simscape platform and one or more add-on products and share that
model with other users, model users. When building the model in Full mode,
the model developer must have a Simscape license and the add-on product
licenses for all the blocks in the model. For example, if a model combines
Simscape, SimHydraulics, and SimDriveline blocks, the model developer
needs to check out licenses for all three products to work with it in Full mode.

http://www.mathworks.com/products/simscape/editingmodes.html
http://www.mathworks.com/products/simscape/editingmodes.html

About the Simscape™ Editing Mode

Once the model is built, model users need only to check out a Simscape license
to simulate the model and fine-tune its parameters in Restricted mode. As
long as no structural changes are made to the model, model users can work in
Restricted mode and do not need to check out add-on product licenses.

Another workflow, available with concurrent licenses only, lets multiple users,
who all have Simscape licenses, share a small number of add-on product
licenses by working mostly in Restricted mode, and temporarily switching
models to Full mode only when they need to perform a specific design task
that requires being in Full mode.

Note MathWorks recommends that you save all the models in Full mode
before upgrading to a new version of Simulink or Simscape software.

If you have saved a model in Restricted mode and, upon upgrading to a new
product version, open the model and it does not run, switch it to Full mode
and save. You can then again switch to Restricted mode and work without
problem.

What You Can Do in Restricted Mode

When your model is open in Restricted mode, you can:

® Simulate the model.
® Inspect parameters.

® Change certain block parameters. In general, you can change numerical
parameter values, but cannot change the block parameterization options.
See the block reference pages for specifics.

® Generate code.
e Make data logging or visualization changes.
® Add or delete regular Simulink blocks (such as sources or scopes) and

appropriate connections.

For other types of changes, listed in the following section, your model has to
be in Full mode. Some of these disallowed changes are impossible to make in
Restricted mode (for example, Restricted parameters are grayed out in block

5-3

5 Add-On Product License Management

dialog boxes). Other changes, like changing the physical topology of a model,
are not explicitly disallowed, but if you make these changes in Restricted
mode, the software will issue an error message when you try to run, compile,
or save such a model.

What You Can Do in Full Mode

You need to open a model in Full mode if you need to do any of the following:
® Add or delete Physical Modeling blocks (that is, Simscape blocks or blocks
from the add-on product libraries).

® Make or break Physical connections (between Conserving or Physical
Signal ports).

® Change the types of signals going into actuators or out of sensors (for
example, from velocity to torque).

® Change configuration parameters.
¢ Change block parameterization options and other restricted parameters.
¢ Change physical units of parameters.

® Protect a referenced model containing Physical Modeling blocks (for more
information, see “Protected Model”).

Switching Between Modes

The following flow chart shows what happens when you switch between
modes.

About the Simscape™ Editing Mode

Mew '
Model
¥
] < Switch to |
Restricted _ Restricted Mode Full
Mode Mode
A Switch to Full ' 5
Mode
hd
AP Ves
g No " Licenses ™
' ~_ Available? -
F
Mo
Yes
Save - Model saved in™,
~._Full Mode?_~
4 Save
Load
. mdl File

New models are always created in Full mode. You can then either save the
model in Full mode, or switch to Restricted mode and save the model in
Restricted mode.

5 Add-On Product License Management

5-6

When you load an existing model, the license manager checks whether it has
been saved in Full or Restricted mode.

e If the model has been saved in Restricted mode, it opens in Restricted mode.

e If the model has been saved in Full mode, the license manager checks
whether all the add-on product licenses for this model are available and, if
so, opens it in Full mode. If a add-on product license is not available, the
license manager issues an error message and opens the model in Restricted
mode. See also “Example with Multiple Add-On Products” on page 5-6.

Note You can set a Simulink preference to specify that the models are always
to open in Restricted mode, regardless of the way they have been saved.

When a model is open, you can transition it between Full and Restricted
modes at any time, in either direction:

e When you try to switch from Restricted to Full mode, the license manager
checks whether all the add-on product licenses for this model are available.
If a add-on product license is not available, the license manager issues an
error message and the model stays in Restricted mode. See also “Example
with Multiple Add-On Products” on page 5-6.

® No checks are performed when switching from Full to Restricted mode.

Note If a add-on product license has been checked out to open a model in Full
mode, it remains checked out for the remainder of the MATLAB session.
Switching to Restricted mode does not immediately return the license.

Example with Multiple Add-On Products

When you try to open a model in Full mode or to switch from Restricted to
Full mode, the license manager scans the model and attempts to check out
the required add-on product licenses as it encounters them in the model. If a
license 1s not available, the license manager issues an error message and the
model stays in Restricted mode. The licenses are checked out sequentially. As
a result, if a model uses blocks from multiple add-on products, some of the

About the Simscape™ Editing Mode

add-on product licenses may have already been checked out by the time the
license manager encounters an unavailable license. In this case, these add-on
product licenses stay checked out until you quit the MATLAB session, even
though the model is in Restricted mode.

For example, consider a model that uses blocks from SimHydraulics and
SimDriveline libraries, but the user who tries to open it has only the
SimDriveline license available. It may happen that the license manager
checks out a SimDriveline license first, and then tries to check out a
SimHydraulics license, which is not available. The license manager then
issues an error message and opens the model in Restricted mode, but the
SimDriveline license stays checked out until the end of the MATLAB session.

Working with Block Libraries

This section describes the specifics of working with block libraries while
using the Editing Mode functionality. These rules are applicable to any
physical modeling blocks, that is, blocks from all Simscape libraries, including
the add-on products. In general, you need to work in Full mode when you
modify a library block. However, when you open a model that references the
modified block, you may work in Restricted mode, under certain conditions.
The following summary details the Editing Mode rules for modifying and
using library blocks:

® To add physical modeling blocks to a library block, you need to work in
Full mode.

= If this library block had not previously contained physical modeling
blocks, you need to work in Full mode to load a preexisting model that
uses this library block or to drag this block to a model.

= If this library block had previously contained physical modeling blocks,
you can work in Restricted mode when loading a preexisting model that
uses this library block. However, you have to work in Full mode to drag
this block from the library to a model.

® To add external physical ports to a library block, you need to work in Full
mode.

= You can work in Restricted mode when loading a preexisting model that
uses this library block.

5 Add-On Product License Management

= However, to connect these additional ports, you need to work in Full
mode because you are changing the model topology.

e To delete external physical ports from a library block, you need to work in
Full mode. If these ports were connected in a model saved in Restricted
mode, loading the model causes the topology to change, so you need to
switch to Full mode to save or compile the model.

Resolving Block Library Links

All Simscape blocks in your models, including the add-on products’ blocks,
must have resolved block library links. You can neither disable nor break
these library links. This is a global requirement of Simscape platform, which
1s necessary to enforce the Editing Mode rules for modifying and using library
blocks, listed above. A model with broken library links will neither compile
nor save. You must restore all the broken block library links for your model to
be valid.

If you want to customize certain blocks and use them in your models, you
must add these modified blocks to your own custom library, then copy the
block instances that you need to your model.

Working with Restricted and Full Modes

Working with Restricted and Full Modes

In this section...

“Set the Model Loading Preference” on page 5-9
“Save a Model in Restricted Mode” on page 5-10
“Work with a Model in Restricted Mode” on page 5-13
“Switch from Restricted to Full Mode” on page 5-22

Set the Model Loading Preference

By default, when you load an existing model, the license manager checks
whether it has been saved in Full or Restricted mode and tries to open it in
this mode. However, you can set your preferences so that the models are
always open in Restricted mode, regardless of the way they have been saved.

1 On the MATLAB Toolstrip, click Preferences. The Preferences dialog
box opens.

2 In the left pane of the Preferences dialog box, select Simscape. The right
pane displays the Editing Mode group box. By default, the Load models
using option is set to Editing mode specified in models.

3 Select Restricted mode always from the drop-down list, as shown, and
click OK.

5-9

5 Add-On Product License Management

5-10

4\ Preferences = HeR (=58
= General Simscape Preferences
~MAT-Files
- Confirmation Dialogs Editing Mode
+~Source Control Load models using | Restricted mode always 4
~-Java Heap Memory
Keyboard

-Fonts

Colors

----- Code Analyzer

----- Toolbars
Cormmand Window
Command History
Editor/Debugger
Help

..... Web

----- Current Folder

----- Variable Editor

----- Warkspace
GUIDE
Time Series Toaols
Figure Copy Template
Compiler

----- DSP System Toclbox

----- Image Acquisition

----- Image Processing

----- System Objects
Simulink

B
Simulink 3D Animation
Simulink Control Design

0K I | Cancel ‘ | Apply | ‘ Help

Now, when you open a model, the license manager does not attempt to check
out add-on product licenses and always opens the model in Restricted mode.

Save a Model in Restricted Mode

Rather that setting your preferences so that all the models always open in
Restricted mode, you can switch an individual model to Restricted mode
before saving it. Such a model will then, by default, open in Restricted mode.

1 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option, which is by
default set to Full.

3 Select Restricted from the drop-down list, as shown, and click OK.

Working with Restricted and Full Modes

%% Configuration Parameters: mech_simple/Cenfiguration (Active)

Select: Editing
Solver Editing Mode: Restricted -]
Data Import/Export
i O.pt\m\za.tmn Physical Networks Model-Wide Simulation Diagnostics
+l-Diagnostics
~Hardware Implementation | Explicit solver used in model containing Physical Networks blocks: |warning =
Model Referencin ————
% Simulation Targetg Zero-crossing control is globally disabled in Simulink: warning v
+-Code Generation X
~Simscape Data Logging

~SimMechanics 1G

Log simulation data: none b |
~SimMechanics 2G

"

Log simulation statistics
Workspace variable name: |simlog
Decimation: 1

Limit data points

Data history (last M steps): | 5000

7] OK H Cancel ||

m

4 Save the model.

Note The Simscape entry does not appear in the left pane of the
Configuration Parameters dialog box until you add at least one Physical
Modeling block to your model. If you create an additional configuration set for
a model, the Simscape entry does not appear in it until you either activate
it or perform a Physical Modeling operation, such as adding or deleting a

Physical Modeling block or connection, opening a Physical Modeling block

dialog box, and so on.

Once you have switched a model to Restricted mode, working with it follows
the rules described in “Work with a Model in Restricted Mode” on page 5-13.
Note, however, that the add-on product licenses for this model stay checked

out until you quit the MATLAB session.

5-11

5 Add-On Product License Management

When you open a model that has been saved in Restricted mode, the license
manager opens it in Restricted mode and does not check out the add-on
product licenses.

Example of Saving a Model in Restricted Mode
In this example, you switch a model to Restricted mode and save it.

1 Open the Simple Mechanical System example model
(ssc_simple_mechanical system).

J"i ssc_simple_mechanical_system
File Edit View Display Diagram Simulation Analysis Code Tools Help
=]] @ = (pl
-8 a 5] -2 4 b () ~ w0
| ssc_simple_mechanical_system
@ |[Pa|ssc_simple_mechanical_system P -
@) Simple Mechanical System
i This modelis builtof both rotationsl and translstions! mechanical blocks to ilustrate Telever JointAFes
their use inasystem The key component of the system s @ summing lever, which drives a load JordT—
consisting of 3 mass, viscous friction, snd & spring connecied to its jointC. Joint B i suspended MaticnSensor =
= on two rotationals prings connected to reference point through a wheel and axde and a gesr box.
Joint A fs connectsd to a torque source trough s gesr boxand & whesl and axle mechanism.)
Tolever JointBFos
Fep=0 |l S'Ec A E e MotionSensort Jaint B position
|deal Torque Source e b QB Ch Tolever JaintCPos E'
FF MRR
& = : Jaint C position
L5 =
—>
Ad
Force Input -1 3
P - . RAAAE
;‘1 z AT SE: AT - Y é P = l N N |
MRR2 " i l . . Lever Translaticnal Spring] EE“EIE{_HDG |
Rotational Spring 1 Gear Boel Rotational Spring Whee! and At rans lstional
Mass b Referencet
Rotational Damper1 Rotational Damper T
F
Mechanical
ks MRRT MRR2 Transiational
~ W Refersnce
» g n ;
Ready 100% odel5s

2 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box
opens.

5-12

Working with Restricted and Full Modes

3 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option, which is
set to Full by default.

4 Select Restricted from the drop-down list and click OK.

5 Save the model as model test edit mode.

Work with a Model in Restricted Mode

When you open a model in Restricted mode, you can perform a variety of
tasks: simulate the model, inspect and fine-tune block parameters, add
and delete basic Simulink blocks, and so on. For a complete list of allowed
operations, see “What You Can Do in Restricted Mode” on page 5-3.

When you open a block dialog box in Restricted mode, some of the block
parameters may be grayed out. These are the so-called restricted parameters
that can be modified only in Full mode. In general, you can change numerical
parameter values in Restricted mode, but you cannot change the block
parameterization options. See the block reference pages for specifics. Note
also that when a restricted parameter defines the block parameterization
schema, nonrestricted parameters available for fine-tuning in Restricted mode
depend on the value of this restricted parameter. For example, in a Constant
Volume Chamber block, the Chamber specification parameter is restricted.
If, at the time the model entered Restricted mode, this parameter was set

to By volume, then the nonrestricted parameters available for fine-tuning
would be Chamber volume, Specific heat ratio, and Initial pressure. If,
however, it was set to By length and diameter, you will have a different set
of parameters available in Restricted mode.

You cannot change physical units in Restricted mode. When you open a block
dialog box in Restricted mode, the drop-down lists of units next to a parameter
name and value are grayed out. When you open a PS-Simulink Converter or
Simulink-PS Converter block dialog box, the Unit parameter is grayed out.

The following examples illustrate operations allowed and disallowed in
Restricted mode:

¢ “How to Simulate and Fine-Tune a Model in Restricted Mode” on page 5-14
¢ “How to Add and Delete Simulink Blocks in Restricted Mode” on page 5-17

5-13

5 Add-On Product License Management

¢ “Performing an Operation Disallowed in Restricted Mode” on page 5-20

How to Simulate and Fine-Tune a Model in Restricted Mode

This example shows how you can work with a model in Restricted mode by
changing certain parameter values and observing the simulation results.

1 Open the model test edit mode model, which you saved in Restricted
mode in “Example of Saving a Model in Restricted Mode” on page 5-12.
The model opens in Restricted mode.

% model_test_edit_mode
File Edit View Display Diagram Simulation Analysis Code Tools Help
=]] @ = (>
E-8 8 Slz] B2 4 e b () ~ w0
model_test_edit_mode
@ |[Pa|model_test_edit_mode b -
@) Simple Mechanical System
i This modelis builtof both rotationsl and translstions! mechanical blocks to ilustrate Telever JointAFes
their use inasystem The key component of the system is @ summing lever, which drives a load Sor—
consisting of & mass, viscous friction, and a spring connected toits jointC. Joint B i suspended NMatienSensor Sl
= on two rotationals prings connected to reference point through a wheel and axde and a gesr box.
Joint A s connectsd to a torque source through s gesr boxand s wheel and axle mechanism.)
Tolever JointBFos
Fep=0 Il S'EQ @F e — Jgint B position
|deal Torque Source S CLIECh Tolever JaintCPos E'
FF MRR
& = : 2 Jaint C position
—»
A4
Force Input -1 3
ﬂ z e SE: b 4 é P = l N R |
MRR2)) l)) Lever Translaticnal Spring T Ed;r_“ca)
Rotational Spring 1 Gom Gow Rectationsl Spring T l_:l . Rr:;r:rmr::
! = D
Rotational Damper1 Rotational Damper %‘
F
Mechanical
b MRRT MRRZ Transiational
~ W Reference
» | T LS
Ready 100% odel5s

2 Open the Joint C Position scope and simulate the model. The models runs
and simulates in Restricted mode.

5-14

Working with Restricted and Full Modes

B oint C position oo] |
E2B|AQak | HER D& F

3 Double-click the Wheel and Axle block to open its dialog box. Notice that
the Mechanism orientation parameter is grayed out, because you cannot
modify the block driving direction in Restricted mode.

E Block Parameters: Wheel and Axle @
Wheel and Axle

The block represents the wheel and axle mechanism as an ideal converter between mechanical rotational and
mechanical translational motions. The mechanism has two connections: port A corresponds to the axle and is
a mechanical rotational conserving port; port P corresponds to the wheel periphery and is a mechanical
translational conserving port.

The block can be used in simulation of rack-pinions, steering wheels, hoisting devices, windlasses, etc. The
block positive directions are from A to the reference point and from reference point to B. The axle positive
rotation causes the wheel perifery to move in positive or negative direction, depending on the "Mechanism
orientation" parameter setting.

Farameters
Wheel radius: 0.05 m
Mechanism orientation: Drives in positive direction

[OK][Cancel H Help Apply

4 Change the Wheel radius parameter value to 0.1.

5 Simulate the model again. Notice that the motion amplitude of node C
became smaller as a result of the wheel radius change.

5-15

5 Add-On Product License Management

P

B oint C position oo] |
E2B|AQak | HER D& F

6 Double-click the Mass block and change the Mass parameter value to 24.

7 Simulate the model. Notice that doubling the mass resulted in increased
vibrations.

B foint C position =& e
EBQak|DER DaFf

P

5-16

Working with Restricted and Full Modes

How to Add and Delete Simulink Blocks in Restricted Mode

This example shows how you can change the model input signal in Restricted
mode by adding and deleting basic Simulink blocks.

1 Open the model test edit mode model, which you saved in Restricted
mode in “Example of Saving a Model in Restricted Mode” on page 5-12.
The model opens in Restricted mode.

% model_test_edit_mode
File Edit View Display Diagram Simulation Analysis Code Tools Help
=]]] @ = ()
-8 2 me-2 d4e b (&~ 10
model_test_edit_mode
@ |[Pa|model_test_edit_mode b -
@) Simple Mechanical System
i This modelis builtof both rotationsl and translstions! mechanical blocks to ilustrate Telever JointAFes
their use in asystem. The key companent of the system is & summing lever, which drives & load - Sor—
consisting of 3 mass, viscous friction, and & spring connecied to its jointC. Joint B i suspended MaticnSensor =
= on two rotafionals prings connected to reference point through & wheel and axde and a gear boe.
Jaint A s connected to s torque souce tiough 8 gear box and & whesl and sxle mechanism. -
Tolever JointBPos
Fop=0 |l SEC 2| é Yo MotionSensort Jaint B position
|desl Torque Source S G E LT Tolever JaintCFos EI
FF mRR
& Y i Joint C position
L3 =
e
)
Force Input - . 3
e fHot—mre—— <] N
e l o Translational Spring T"“Eﬁ“l:t’_““:;
Raotational Spring1 Gear Bl Rotational Spring Wheel and Asde . Tans latiol
= b Referencel
Rotational Dampert Rotsticnal Damper L
q
Mechanical
sl MRRT MRR2 Transiational
h U Refarence
LA RN 1 b
Ready 100% odel5s

2 Open the Joint C Position scope and simulate the model.

5-17

5 Add-On Product License Management

P

B oint C position oo] |
E2B|AQak | HER D& F

3 Delete the Signal Builder block named Force Input. Replace it with a Sine
Wave block from the Simulink Sources library, as shown below.

5-18

Working with Restricted and Full Modes

’ﬁ model_test_edit_mode * EI@

File Edit View Display Diagram Simulation Apnalysis Code Tools Help

=]]| @ = o
-8 & HO B2 ¢ 10.0 =
model_test_edit_mode
® mode_test_adit_mode » -
simple Mechanical System
This model s buitt of both rotational and translational mechanical blocks to ilustrate e ARt
their use in s system The key component of the system is & summing lever, which drives s load - So—
consisting of & mass, viscous friction, and &spring connected to its jointC. Joint B & suspended MtionSensor =

on two rotationals prings connected to reference point traugh a wheel and axle and a gear bax.

Joint A s connected to & torgue sowce through a gear boxand s wheel and axle mechanism. Tz JointBFPos

fixj=0 Il SE‘: Al é jF MationSensor Joint B position
Idesl Torque Source Sz i CE TolLever JointCPos El
a4

; Jaint C position
R e e
s|newave 1 . AME 1
K s@: R0 SN 7y S =] D
Translaticnal Spring Ma:,har’u:,al
MRR2 potational Spring Rctational Spring e Lever Trans stional
Gear Bax = Mass Referencet
Rotational Damper1 Rotstional Damper
Mechanical
MRR1 MRRZ2 Translational
N Reference
| | 1 | »
Ready 100% odel5s

4 Simulate the model again. The model successfully compiles and simulates
in Restricted mode.

5-19

5 Add-On Product License Management

5-20

P

B oint C position oo] |
E2B|AQak | HER D& F

0.04

-0.04

Time offset. 0

Performing an Operation Disallowed in Restricted Mode

This example shows what happens when you perform an operation that is
disallowed in Restricted mode.

1 Open the model test _edit mode model, which you saved in Restricted
mode in “Example of Saving a Model in Restricted Mode” on page 5-12.
The model opens in Restricted mode.

2 Double-click the MotionSensor2 block to open the subsystem.

Working with Restricted and Full Modes

Pﬁ model_test_edit_mode/MotionSensor2 EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
B-EHBC 2 E B AOP 2 @ w w7 @ -
model_test_edit_mode MotionSensor2 [
® mode_test_edit_mode)MotionSensDr2 hd
& e =

Tolever Pfp———B|PSS
= Ideal Translationsl > Jng“

Mation Sei PS-Simulink

o ssE Converter
b
Ready 100% odel5s

3 Delete the connection line between port P of the Ideal Translational Motion
Sensor block and the PS-Simulink Converter block. Instead, connect port
V of the Ideal Translational Motion Sensor block to the input port of the
PS-Simulink Converter block, to measure the velocity on node C of the
lever.

5-21

5 Add-On Product License Management

Pﬁ model_test_edit_mode/MotionSensor2 * EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
(=]] = T iid
B-Ee e 2B E 40P » @ w0 w5 @ @
MotionSensor2
@ |[Pa|meodel_test_edit_mode b [Pa|MetionSensor2 hd
G—l MTR
B e o §
roie e \—9

= W ; — »

ieal Translational P JointCFos

Maticn Se Imuiing
s Converter
=
Ready 100% odel5s

4 Try to simulate the model. An error message appears saying that the
model cannot be compiled because its topology has been changed while in
Restricted mode. You can either undo the changes, or switch to Full mode,
as described in “Switch from Restricted to Full Mode” on page 5-22.

Switch from Restricted to Full Mode
If you need to perform a task that is disallowed in Restricted mode, you can
try to switch the model to Full mode.

1 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box

opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option.

5-22

Working with Restricted and Full Modes

3 Select Full from the drop-down list, as shown, and click OK.

% Configuration Parameters: mech_simple/Configuration [Active) =
Select: Editing o
Solver Editing Mode: IFuH 'I

Data Import/Export
Optimization
Diagnostics

~Hardware Implementation | Explicit solver used in model containing Physical Networks blocks:

Model Referencing
-Simulation Target Zero-crossing control is globally disabled in Simulink:

~Code Generation
~Simscape

~SimMechanics 1G
~SimMechanics 2G

=

Physical Networks Model-Wide Simulation Diagnostics

5

&

&

Data Logging

Log simulation data: none ']

"

Log simulation statistics

m

Workspace variable name: |simlog
Decimation: 1
Limit data points

Data history (last M steps): | 5000

. m r

J [oK H Cancel H Help J Apply

The license manager checks whether all the add-on product licenses for
this model are available. If yes, it checks out the add-on product licenses
and switches the model to Full mode. If a add-on product license is not
available, the license manager issues an error message and the model stays
in Restricted mode.

Note If the switch to Full mode fails but some of the add-on product licenses
have already been checked out, they stay checked out until you quit the
MATLAB session. For more information, see “Example with Multiple Add-On
Products” on page 5-6.

Once the model is switched to Full mode, you can perform the needed design
and simulation tasks, and then either save it in Full mode, or switch back to
Restricted mode and save it in Restricted mode.

5-23

5 Add-On Product License Management

5-24

Editing Mode Information

In this section...

“What Is the Current Mode?” on page 5-24

“Which Licenses Are Checked Out?” on page 5-24

What Is the Current Mode?

If you are unsure whether the model is currently open in Restricted or Full
mode, you can check by following these steps.

1 From the top menu bar in the model window, select Simulation > Model

Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select

Simscape. The right pane displays the Editing Mode option, which is
either Full or Restricted.

3 At this point, you can either try switching the mode by selecting a different
option from the drop-down list, or click Cancel to stay in the current mode.

Which Licenses Are Checked Out?

Use the MATLAB license command to get a list of all the licenses currently
in use. In the MATLAB Command Window, type

license('inuse')

This command returns a list of licenses checked out in the current MATLAB

session. In the list, products are listed alphabetically by their license feature
names.

electrical ground
specifying 1-36

L
linearizing
Simscape™ models 2-55

numerical simulation issues
avoiding 1-40

o

operating points
finding in Simscape™ models 2-48
linearizing Simscape™ models at 2-55

P

ports
physical conserving 1-9
physical signal 1-10

S

Simscape Editing Mode 5-2
Full mode 5-4

information 5-24

Restricted mode 5-3

saving in Restricted mode 5-10

switching between modes 5-4

workflows 5-2

working in Restricted mode 5-13

working with block libraries 5-7
Simscape software

block library structure 1-11

editing modes 5-2

logging simulation data 3-2

T

trimming
Simscape™ models 2-48

U

units
defining physical units 4-4

\"

variables
across 1-4
direction 1-6
through 1-4
using in model equations 1-5

Index-1

	toc
	Model Construction
	Basic Principles of Modeling Physical Networks
	Overview of the Physical Network Approach to Modeling Physical S
	Variable Types
	Building the Mathematical Model
	Direction of Variables
	Connector Ports and Connection Lines
	Physical Conserving Ports
	Physical Signal Ports

	Connecting Simscape Diagrams to Simulink Sources and Scopes

	Simscape Block Libraries
	Library Structure Overview
	Using the Simulink Library Browser to Access the Block Libraries
	Using the Command Prompt to Access the Block Libraries

	Essential Physical Modeling Techniques
	Building Your Model
	Using the Conserving Ports
	Using the Physical Signal Ports

	Creating and Simulating a Simple Model
	Building a Simscape Diagram
	Modifying Initial Settings
	Running the Simulation
	Adjusting the Parameters
	Changing the Force Profile
	Changing the Model Parameters
	Changing the Mass Position Output Units

	Modeling Best Practices
	Grounding Rules
	Each Domain Requires at Least One Reference Block
	Each Circuit Requires at Least One Reference Block
	Multiple Connections to the Domain Reference Are Allowed Within

	Avoiding Numerical Simulation Issues
	Example of Using a Parasitic Resistance to Avoid Numerical Simul

	Modeling Pneumatic Systems
	Intended Applications
	Assumptions and Limitations
	Fundamental Equations
	Network Variables
	Connection Constraints
	References

	Model Simulation
	How Simscape Models Represent Physical Systems
	Representations of Physical Systems
	Differential, Differential-Algebraic, and Algebraic Systems
	Stiffness
	Events and Zero Crossings
	Working with Simscape Representation
	Creating and Detecting Zero Crossings in Simscape Models

	How Simscape Simulation Works
	Simscape Simulation Phases
	Model Validation
	Network Construction
	Equation Construction
	Initial Conditions Computation
	Finding an Initial Steady State

	Transient Initialization
	Transient Solve

	Setting Up Solvers for Physical Models
	About Simulink and Simscape Solvers
	Choosing Simulink and Simscape Solvers
	Working with Global Simulink Solvers
	Working with Local Simscape Solvers

	Harmonizing Simulink and Simscape Solvers
	Switching from the Default Explicit Solver to Other Simulink Sol
	Filtering Input Signals and Providing Time Derivatives
	Enabling or Disabling Simulink Zero-Crossing Detection
	Making Multirate Simulation Consistent

	Customizing Solvers for Physical Models
	Important Concepts and Choices in Physical Simulation
	Variable-Step and Fixed-Step Solvers
	Explicit and Implicit Solvers
	Full and Sparse Linear Algebra
	Event Detection and Location
	Unbounded, Bounded, and Fixed-Cost Simulation
	Global and Local Solvers

	Making Optimal Solver Choices for Physical Simulation
	Simulating with Variable Time Step
	Simulating with Fixed Time Step — Local and Global Fixed-Step So
	Simulating with Fixed Cost
	Troubleshooting and Improving Solver Performance
	Multiple Local Solvers Example with a Mixed Stiff-Nonstiff Syste

	Troubleshooting Simulation Errors
	Troubleshooting Tips and Techniques
	System Configuration Errors
	Missing Solver Configuration Block
	Extra Fluid Block or Gas Properties Block
	Missing Reference Block
	Basic Errors in Physical System Representation

	Numerical Simulation Issues
	Dependent Dynamic States
	Parameter Discontinuities

	Initial Conditions Solve Failure
	Transient Simulation Issues
	Transient Initialization Not Converging
	Step-Size-Related Errors — Dependent States — High Stiffness

	Code Generation
	About Code Generation from Simscape Models
	Reasons for Generating Code
	Using Code-Related Products and Features
	How Simscape Code Generation Differs from Simulink
	Simscape and Simulink Code Generated Separately
	Compiler and Processor Architecture Requirements
	Precompiled Libraries Provided for Selected Compilers
	Simscape Code Reuse Not Supported
	Tunable Parameters Not Supported
	Simscape Run-Time Parameter Inlining Override of Global Exceptio

	Real-Time Simulation
	What Is Real-Time Simulation?
	Using Real-Time Simulation to Test Virtual Controllers and Syste
	Example

	Requirements for Real-Time Simulation
	Bounding and Stabilizing Execution Time with Fixed-Step Solvers

	Simulating Physical Models in Real Time
	Preparing a Model for Real-Time Simulation
	Simulate and Converge with Variable-Step Solver
	Check Variable Time Steps for Optimal Step Size
	Simulate with Fixed-Cost Solver and Compare to Variable-Step Sim
	Adjust Step Size and Iterations to Approximate Variable-Step Sim
	Attempt to Simulate in Real Time
	Respond to Real-Time Simulation Failures

	Troubleshooting Real-Time Simulation Problems
	Speeding Up Real-Time Execution
	Simulating Parts of the System in Parallel
	Eliminating Effects That Require Intensive Computation

	Finding an Operating Point
	What Is an Operating Point?
	Using Operating Points for Linearization
	Example

	Some Operating Point Search Methods
	Time-Based Search
	State-Based Search
	Checking Discrete System States

	Finding Operating Points in Physical Models
	Simulating in Time to Search for an Operating Point
	Using the Simscape Steady-State Solver
	Using Simulink Control Design Techniques to Find Operating Point
	Using Sources to Find Operating Points Not Recommended
	Simulink trim Function Not Supported with Simscape Models

	Linearizing at an Operating Point
	What Is Linearization?
	What Is a Linearized Model?
	Example
	Choosing a Good Operating Point for Linearization
	Linearizable and Nonlinearizable Operating Points in a Hydraulic

	Some Linearization Methods
	Full Simulation- or Operation-Based Perturbations
	Analytic Approximations to Known State Dynamics
	Numerical Approximations to Known State Dynamics

	Linearizing a Physical Model
	Independent Versus Dependent States
	Linearizing with Simulink Control Design Software
	Linearizing with the Simulink linmod and dlinmod Functions
	Linearizing with Simulink Linearization Blocks

	Linearize an Electronic Circuit
	About the Nonlinear Bipolar Transistor Circuit
	Simulating the Basic Model Starting at Steady and Nonsteady Stat
	Changing the Steady State and Amplification in the Basic Model
	Opening and Simulating a Modified Model Prepared for Linearizati
	Approaching Steady State Through Long-Time Transient Simulation

	Finding Operating Points in a Transistor Circuit with the Simsca
	Simulating and Saving the Steady State as an Operating Point

	Linearizing a Transistor Circuit with Simulink and Related Softw
	Counting Model States
	Linearizing the Model at an Initial Steady State with linmod
	Linearizing the Model at a Specified Operating Point with linmod
	Linearizing the Model at Multiple Simulation Times with a Linear
	Suitability of the Steady State for Linearization — Nonlinearity
	Analyzing the Linearization Results — Finding the Minimum Realiz

	Limitations
	Sample Time and Solver Restrictions
	Algebraic Loops
	Restricted Simulink Tools
	Unsupported Simulink Tools
	Simulink Tools Not Compatible with Simscape Blocks
	Code Generation
	Code Generation and Fixed-Step Solvers

	References

	Data Logging
	About Simulation Data Logging
	Suggested Workflows
	Limitations

	How to Log Simulation Data
	How to Enable Data Logging
	Data Logging Options

	Log and Plot Simulation Data
	Log Simulation Statistics

	Physical Units
	How to Work with Physical Units
	Unit Definitions
	How to Specify Units in Block Dialogs
	Thermal Unit Conversions
	About Affine Units
	When to Apply Affine Conversion
	How to Apply Affine Conversion

	Angular Units
	References

	Units for Angular Velocity and Frequency

	Add-On Product License Management
	About the Simscape Editing Mode
	Suggested Workflows
	What You Can Do in Restricted Mode
	What You Can Do in Full Mode
	Switching Between Modes
	Example with Multiple Add-On Products

	Working with Block Libraries
	Resolving Block Library Links

	Working with Restricted and Full Modes
	Set the Model Loading Preference
	Save a Model in Restricted Mode
	Example of Saving a Model in Restricted Mode

	Work with a Model in Restricted Mode
	How to Simulate and Fine-Tune a Model in Restricted Mode
	How to Add and Delete Simulink Blocks in Restricted Mode
	Performing an Operation Disallowed in Restricted Mode

	Switch from Restricted to Full Mode

	Editing Mode Information
	What Is the Current Mode?
	Which Licenses Are Checked Out?

	Index

	tables
	Physical Unit Abbreviations Defined by Default in the Simscape U

